Кодирование информации, применяемое в ЭВМ

Системы счисления и двоичное представление информации

Информация (лат. informatio — разъяснение, изложение, набор сведений) — базовое понятие в информатике, которому нельзя дать строгого определения, а можно только пояснить:

  • информация — это новые факты, новые знания;
  • информация — это сведения об объектах и явлениях окружающей среды, которые повышают уровень осведомленности человека;
  • информация — это сведения об объектах и явлениях окружающей среды, которые уменьшают степень неопределенности знаний об этих объектах или явлениях при принятии определенных решений.

Понятие «информация» является общенаучным, т. е. используется в различных науках: физике, биологии, кибернетике, информатике и др. При этом в каждой науке данное понятие связано с различными системами понятий. Так, в физике информация рассматривается как антиэнтропия (мера упорядоченности и сложности системы). В биологии понятие «информация» связывается с целесообразным поведением живых организмов, а также с исследованиями механизмов наследственности. В кибернетике понятие «информация» связано с процессами управления в сложных системах.

Основными социально значимыми свойствами информации являются:

  • полезность;
  • доступность (понятность);
  • актуальность;
  • полнота;
  • достоверность;
  • адекватность.

В человеческом обществе непрерывно протекают информационные процессы: люди воспринимают информацию из окружающего мира с помощью органов чувств, осмысливают ее и принимают определенные решения, которые, воплощаясь в реальные действия, воздействуют на окружающий мир.

Информационный процесс — это процесс сбора (приема), передачи (обмена), хранения, обработки (преобразования) информации.

Сбор информации — это процесс поиска и отбора необходимых сообщений из разных источников (работа со специальной литературой, справочниками; проведение экспериментов; наблюдения; опрос, анкетирование; поиск в информационно-справочных сетях и системах и т. д.).

Передача информации — это процесс перемещения сообщений от источника к приемнику по каналу передачи. Информация передается в форме сигналов — звуковых, световых, ультразвуковых, электрических, текстовых, графических и др. Каналами передачи могут быть воздушное пространство, электрические и оптоволоконные кабели, отдельные люди, нервные клетки человека и т. д.

Хранение информации — это процесс фиксирования сообщений на материальном носителе. Сейчас для хранения информации используются бумага, деревянные, тканевые, металлические и другие поверхности, кино- и фотопленки, магнитные ленты, магнитные и лазерные диски, флэш-карты и др.

Обработка информации — это процесс получения новых сообщений из имеющихся. Обработка информации является одним из основных способов увеличения ее количества. В результате обработки из сообщения одного вида можно получить сообщения других видов.

Защита информации — это процесс создания условий, которые не допускают случайной потери, повреждения, изменения информации или несанкционированного доступа к ней. Способами защиты информации являются создание ее резервных копий, хранение в защищенном помещении, предоставление пользователям соответствующих прав доступа к информации, шифрование сообщений и др.

Кодирование информации, применяемое в ЭВМ

1.Коды, применяемые в ЭВМ

Каким образом обрабатывается информация в компьютере и как обеспечить обмен информацией между пользователем и ЭВМ?

Процесс приема и передачи информации можно изобразить на схеме:

кодирование информации в ЭВМ

Кодирование – операция, связанная с переходом от исходной формы представления информации в форму, удобную для хранения, передачи или обработки.

Декодирование – связано с обратным переходом к исходному представлению информации.

В настоящее время существуют разные способы кодирования и декодирования информации в компьютере.

Выбор способа зависит от вида информации, которую необходимо кодировать: текст, число, графическое изображение и т.д.

ЭВМ может обрабатывать информацию, представленную только в числовой форме. Любая другая информация (текстовая, графическая) преобразуется в числовую информацию. Так, например, при вводе текста, каждый символ кодируется определенным числом (существуют специальные таблицы кодировки, наиболее известные и распространенные коды ASCII), а при выводе наоборот, каждому числу соответствует изображение определенного символа.

Восемь двоичных разрядов позволяют закодировать 2 8 =256 символов, этого достаточно, чтобы закодировать любую букву, цифру или служебный символ. Нажатие клавиши на клавиатуре приводит к тому, что сигнал посылается в компьютер в виде двоичного числа, которое хранится в кодовой таблице.

2. Кодовая таблица символов

Кодовая таблица символов — это внутреннее представление символов в компьютере. Во всем мире в качестве стандарта принята таблица ASCII (American Standart Code for Information Interchange) – Американский стандартный код для обмена информацией.

Первые 128 символов (от 0 до 127) – это цифры, прописные и строчные буквы латинского алфавита, управляющие символы. Вторая половина кодовой таблицы (от 128 до 255) предназначена для национальных символов (в том числе кириллицы), математических символов и так называемых псевдографических символов, которые используются для рисования рамок.

Нужно помнить о трех особенностях алфавита в кодовой таблице и их следствия:

1) прописные и строчные буквы представлены разными кодами, т.е. “А” и “а” – разные объекты;

2) при упорядочивании слов по алфавиту сравниваются между собой десятичные коды букв. Поэтому, чтобы избежать недоразумений, если не указано “нечувствителен к регистру”, используйте только латинский или русский алфавит и только прописные или только строчные первые буквы. Необходимо помнить, что любая цифра “меньше” любой буквы, код латинских букв “меньше” чем русских;

3) Многие латинские и русские буквы имеют визуально неразличимое начертание, но разные коды.

Итак, компьютер способен распознавать только значения бита. Однако он редко работает с конкретными битами в отдельности, а совокупность из 8 битов, воспринимаемая компьютером как единое целое, называется байтом.

Вся работа компьютера – это управление потоками байтов, которые устремляются в компьютер с клавиатуры или дисков (или по линии связи), преобразовываются по командам программ, запоминаются временно или записываются на постоянное хранение на магнитный диск, а также выводятся на экран дисплея или бумагу принтера в виде букв, цифр, значков.

коды международные

3.Кодирование информации. Кодирование данных в ЭВМ

В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.

Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование.

Кодирование – это преобразование данных одного типа через данные другого типа. В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binary digit – сокращенно bit).

Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода.

Кодирование чисел

Есть два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.

Кодирование целых чисел производиться через их представление в двоичной системе счисления: именно в этом виде они и помещаются в ячейке. Один бит отводиться при этом для представления знака числа (нулем кодируется знак «плюс», единицей – «минус»).

Для кодирования действительных чисел существует специальный формат чисел с плавающей запятой. Число при этом представляется в виде:

где M – мантисса, p – порядок числа N, q – основание системы счисления. Если при этом мантисса M удовлетворяет условию , то число N называют нормализованным.

Кодирование координат

Закодировать можно не только числа, но и другую информацию, например, о том, где находится некоторый объект. Величины, определяющие положение объекта в пространстве, называются координатами. В любой системе координат есть начало отсчёта, единица измерения, масштаб, направление отсчёта, или оси координат. Примеры систем координат – декартовы координаты, полярная система координат, шахматы, географические координаты.

Кодирование текста

Для представления текстовой информации используется таблица нумерации символов или таблица кодировки символов, в которой каждому символу соответствует целое число (порядковый номер). Восемь двоичных разрядов могут закодировать 256 различных символов.

Существующий стандарт ASCII (сокращение от American Standard Code for Information Intercange – американский стандартный код для обмена информацией; 8 – разрядная система кодирования) содержит две таблицы кодирования – базовую и расширенную. Первая таблица содержит 128 основных символов, в ней размещены коды символов английского алфавита, а во второй таблице кодирования содержатся 128 расширенных символов.

Так как в этот стандарт не входят символы национальных алфавитов других стран, то в каждой стране 128 кодов расширенных символов заменяются символами национального алфавита. В настоящее время существует множество таблиц кодировки символов, в которых 128 кодов расширенных символов заменены символами национального алфавита.

Так, например, кодировка символов русского языка Widows – 1251 используется для компьютеров, работающих под ОС Windows. Другая кодировка для русского языка – это КОИ – 8, которая также широко используется в компьютерных сетях и российском секторе Интернет.

В настоящее время существует универсальная система UNICODE, основанная на 16 – разрядном кодировании символов. Эта 16 – разрядная система обеспечивает универсальные коды для 65536 различных символов, т.е. в этой таблице могут разместиться символы языков большинства стран мира.

Кодирование графической информации

В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие группы – растровую и векторную графику.

Растровые изображения представляют собой однослойную сетку точек, называемых пикселями (pixel, от англ. picture element). Код пикселя содержит информации о его цвете.

Для описания черно-белых изображений используются оттенки серого цвета, то есть при кодировании учитывается только яркость. Она описывается одним числом, поэтому для кодирования одного пикселя требуется от 1 до 8 бит: чёрный цвет – 0, белый цвет – N = 2 k -1, где k – число разрядов, которые отводятся для кодирования цвета. Например, при длине ячейки в 8 бит это 256-1 = 255. Человеческий глаз в состоянии различить от 100 до 200 оттенков серого цвета, поэтому восьми разрядов для этого вполне хватает.

Цветные изображения воспринимаются нами как сумма трёх основных цветов – красного, зелёного и синего. Например, сиреневый = красный + синий; жёлтый = красный + зелёный; оранжевый = красный + зелёный, но в другой пропорции. Поэтому достаточно закодировать цвет тремя числами – яркостью его красной, зелёной и синей составляющих. Этот способ кодирования называется RGB (Red – Green – Blue). Его используют в устройствах, способных излучать свет (мониторы). При рисовании на бумаге действуют другие правила, так как краски сами по себе не испускают свет, а только поглощают некоторые цвета спектра. Если смешать красную и зелёную краски, то получится коричневый, а не жёлтый цвет. Поэтому при печати цветных изображений используют метод CMY (Cyan – Magenta – Yellow) – голубой, сиреневый, жёлтый цвета. При таком кодировании красный = сиреневый + жёлтый; зелёный = голубой + жёлтый.

В противоположность растровой графике векторное изображение многослойно. Каждый элемент такого изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пиксели которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.) Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.

Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).

Кодирование звука

Как всякий звук, музыка является не чем иным, как звуковыми колебаниями, зарегистрировав которые достаточно точно, можно этот звук безошибочно воспроизвести. Нужно только непрерывный сигнал, которым является звук, преобразовать в последовательность нулей и единиц. С помощью микрофона звук можно превратить в электрические колебания и измерить их амплитуду через равные промежутки времени (несколько десятков тысяч раз в секунду). Каждое измерение записывается в двоичном коде. Этот процесс называется дискретизацией. Устройство для выполнения дискретизации называется аналогово-цифровым преобразователем (АЦП). Воспроизведение такого звука ведётся при помощи цифро-аналогового преобразователя (ЦАП). Полученный ступенчатый сигнал сглаживается и преобразуется в звук при помощи усилителя и динамика. На качество воспроизведения влияют частота дискретизации и разрешение (размер ячейки, отведённой под запись значения амплитуды). Например, при записи музыки на компакт-диски используются 16-разрядные значения и частота дискретизации 44 032 Гц.

Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.

Издавна используется достаточно компактный способ представления музыки – нотная запись. В ней с помощью специальных символов указывается высота и длительность, общий темп исполнения и как сыграть. Фактически, такую запись можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI (Musical Instrument Digital Interface). При таком кодировании запись компактна, легко меняется инструмент исполнителя, тональность звучания, одна и та же запись воспроизводится как на синтезаторе, так и на компьютере.

Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.

Есть и другие форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18 – 20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает примерно 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.

Двоичная методика

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. В процессе хранения, обработки и передачи информации в компьютере используется особая двоичная система кодирования, алфавит которой состоит всего из двух знаков «0» и «1». Дело в том, что компьютер способен обрабатывать и хранить только лишь один вид представления данных – цифровой. Связано это с тем, что в цифровой электронике удобнее всего представлять информацию в виде последовательности электрических импульсов: техническое устройство, безошибочно различающее 2 разных состояния сигнала, оказалось проще создать, чем то, которое бы безошибочно различало 5 или 10 различных состояний. Поэтому любую входящую в него информацию необходимо переводить в цифровой вид. Такое кодирование информации принято называть двоичным, на его основе работают все окружающие нас компьютеры, смартфоны и т.п.

На английском языке используется выражение binary digit либо сокращённо bit (бит). Через 1 бит можно выразить: да либо нет; белое или чёрное; ложь либо истина.

Двоичное кодирование информации привлекает тем, что легко реализуется технически. Электронные схемы для обработки двоичных кодов должны находиться только в одном из двух состояний: есть сигнал/нет сигнала или высокое напряжение/низкое напряжение. В результате любая информация кодируется в компьютерах с помощью последовательностей лишь двух цифр — 0 и 1.

Итак, минимальные единицы измерения информации – это бит и байт. Один бит позволяет закодировать 2 значения (0 или 1). Используя два бита, можно закодировать 4 значения: 00, 01, 10, 11. Тремя битами кодируются 8 разных значений: 000, 001, 010, 011, 100, 101, 110, 111. Из приведенных примеров видно, что добавление одного бита увеличивает в 2 раза то количество значений, которое можно закодировать. 1 байт состоит из 8 бит и способен закодировать 256 значений.

Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Наряду с битами и байтами используют и большие единицы измерения информации.

  • 1 бит ;
  • 1 байт = 8 бит;
  • 1 Кбайт = 2 10 байт = 1024 байт;
  • 1 Мбайт = 2 10 Кбайт = 1024 Кбайт = 2 20 байт;
  • 1 Гбайт = 2 10 Мбайт = 1024 Мбайт = 2 30 байт;
  • 1 Тбайт = 2 10 Гбайт = 1024 Гбайт = 2 40 байт.
  • 1 Пбайт = 2 10 Тбайт = 1024 Тбайт = 2 50 байт.

Подробнее о информации в компьютерных системах можно прочтитать в статье Понятие информации. Информатика

2 Чередующиеся сигналы

Индеец пингует

Индеец пингует

В примитивном виде кодирование чередующимися сигналами используется человечеством очень давно. В предыдущем разделе мы сказали про дым и огонь. Если между наблюдателем и источником огня ставить и убирать препятствие, то наблюдателю будет казаться, что он видит чередующиеся сигналы «включено/выключено». Меняя частоту таких включений мы можем выработать последовательность кодов, которая будет однозначно трактоваться принимающей стороной.

Наряду с сигнальными флажками на морских и речных судах, при появлении радио начали использовать код Морзе. И при всей кажущейся бинарности (представление кода двумя значениями), так как используются сигналы точка и тире, на самом деле это тернаный код, так как для разделения отдельных кодов-символов требуется пауза в передаче кода. То есть код Морзе кроме «точка-тире», что нам даёт букву «A» может звучать и так — «точка-пауза-тире» и тогда это уже две буквы «ET».

Методы кодирования данных

Потребность в создании способов кодирования данных возникла с появлением первых ЭВМ. Изобретение таких методов на тот период времени могло бы поспособствовать возможности преобразования информации любого типа. Такая необходимость и повлияла на большое количество научных открытий мирового масштаба. Но сам интерес к шифрованию появился значительно раньше. Самыми первыми и наиболее известными методами кодирования являются письменность и математика, в том числе, и ее раздел – арифметика. Они позволяют представить речь или числовые данные.

Метод кодирования очень удобен, а сама информация в чистом виде не встречается. Закодированной она должна быть в любом случае. Система двоичных чисел используется для кодировки информации наиболее часто. Ее можно наблюдать в ЭВМ, а также при работе устройств числового программного управления (УЧПУ) станками, режущими по металлу и другим материалам. Интересно, что двоичная система используется и в роботизированных комплексах.

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector