Как устроен и зачем нужен квантовый компьютер

Квантовый компьютер — квантовый интернет

Даже самые осторожные ученые начинают допускать новые сверхвозможности квантовых компьютеров – вплоть до материализации предметов и мгновенного перемещения неживых и живых объектов на неограниченные расстояния — после того, как 26 февраля 2021, ученым впервые удалось соединить два отдельных кубита (основы квантовых компьютеров) посредством гибкого кабеля.

Согласно сообщению Microsoft News за 27 февраля , был осуществлен громадный скачок в развитии технологии квантовых компьютеров Qubit : была создана первая действующая модель квантового интернета – что до сих пор считалось в принципе невозможным. Последствия развития квантового интернета трудно представить и переоценить: он превосходит возможности и потенциал существующей сети буквально в миллиарды раз.

Все решения уже известны

Ещё одна особенность кубитов — зависимость значения от измерения. Это значит, что программист не узнает значение кубита до тех пор, пока его не измерит, а сам факт измерения тоже влияет на значение кубита. Звучит странно, но это особенность квантовых частиц.

Именно благодаря тому, что кубит находится во всех состояниях одновременно до тех пор, пока его не измерили, компьютер мгновенно перебирает все возможные варианты решения, потому что кубиты связаны между собой. Получается, что решение становится известно сразу, как только введены все данные. Суперпозиция и даёт ту параллельность в вычислениях, которая ускоряет работу алгоритмов в разы.

Вся сложность в том, что результат работы квантового компьютера — это правильный ответ с какой-то долей вероятности. И нужно строить алгоритмы таким образом, чтобы максимально приблизить вероятность правильного ответа к единице.

Рабочая температура внутри таких компьютеров — минус 273 градуса по Цельсию

Квантовый компьютер: кубиты вместо битов

В лаборатории Санта-Барбары (Калифорния) команда Google под руководством Джона Мартиниса создала микрочип под названием «Сикомор». Этот квантовый чип состоит из 53 проволочных петель, вокруг которых ток может течь при двух разных энергиях, представляя собой 0 или 1. Чип располагается в криогенной холодильной машине, которая охлаждает провода почти до абсолютного нуля, делая их сверхпроводимыми. Такая температура необходима, чтобы на мгновение (точнее, на несколько десятков миллионных долей секунды) уровни энергии стали вести себя как квантовые частицы — кубиты (qubits, от quantum bits). Эти частицы могут находиться в состоянии так называемой суперпозиции — состояние 0 и 1 одновременно.

Суперпозиция печально знаменита тем, что ее очень сложно объяснить.

Многие популяризаторы используют образ, который заставляет физиков выть в муках: «Представьте, что кубит — это бит информации, который может быть сразу и 0, и 1 и исследовать эти состояния одновременно». Если бы у меня была возможность рассказать об этом подробно, я бы упомянул об амплитудах вероятности — ключевой концепции квантовой механики со времен Вернера Гейзенберга и Эрвина Шрёдингера.

Вот короткая версия: в повседневной жизни вероятность наступления какого-либо события может составлять от 0 до 100% — поэтому вы никогда не слышали о 30-процентной отрицательной вероятности дождя!

Однако первичные элементы, из которых состоит вся окружающая действительность (фотоны и электроны), подчиняются совершенно иным законам вероятности. Они измеряются амплитудами, которые могут быть положительными, отрицательными и даже комплексными (включая квадратный корень из −1).

Более того, если событие — скажем, фотон, врезающийся в какую-то точку на экране, — может произойти в одном случае с положительной амплитудой, а в другом случае с отрицательной, то обе вероятности могут взаимно уничтожиться: общая амплитуда станет равна нулю и событие никогда не произойдет. Это явление называется квантовой интерференцией, и именно она лежит в основе всего того, что вам кажется очень странным в квантовом мире.

Вернемся к кубитам. Кубит — это просто бит информации с двумя амплитудами вероятности: 0 и 1. Если вы наблюдаете за кубитом, вы заставляете его случайным образом принять значение либо 0, либо 1.

Однако если вы не наблюдаете за ним, то происходит интерференция амплитуд, и кубит выдает эффекты, свойственные обеим амплитудам. Вы не можете объяснить их только тем фактом, что кубит в состоянии 1 или в состоянии 0.

Один кубит соответствует двум состояниям, два кубита — уже четырем, а восемь кубитов могут принимать значения от 0 до 255.

Что происходит, если у вас не один кубит, а тысяча, и все они взаимодействуют друг с другом (в результате чего получается то самое состояние квантовой «запутанности» )? Законы квантовой механики действуют непреклонно — придется просчитывать все возможные значения всех тысяч бит. Это 2 в тысячной степени — больше, чем количество атомов в наблюдаемой Вселенной!

Если у вас 53 кубита, как в «Сикоморе» от Google, то получится 2 в степени 53, или около 9 квадриллионов значений.

Практика

К числу таких задач, в частности, относятся:

— поиск в массивах неструктурированных данных (радикальное ускорение обработки больших данных);

— разложение чисел на простые множители (алгоритм Шора, важен для преодоления криптозащиты данных — квантовый компьютер за секунды способен сделать то, на что у суперкомпьютера уйдут миллиарды лет);

— быстрое генерирование последовательности подлинно случайных чисел (практическое применение — одноразовые ключи для гарантированно защищенной передачи данных по открытому каналу связи; очевидно, о решении именно этой задачи и сообщил Google);

— моделирование квантовых систем — молекул и материалов (практическое применение — фармакология, средства защиты от биологического оружия), причем для решения таких задач достаточен «маломощный» квантовый компьютер с регистром до 100 кубит.

Но пока это лишь теоретические возможности. Физическая реализация квантовых компьютеров находится в стадии исследований и экспериментов, а развитие алгоритмов квантовых вычислений обеспечивается имитацией квантовых компьютеров с помощью устройств, лишенных квантовой природы.

Программное обеспечение квантовых вычислений — системы программирования и отладки программ — только предстоит создать. Это нетривиальная задача. Она не решена даже для традиционных суперкомпьютеров, мощность которых эффективно используется только для ограниченного круга задач.

У чудес есть пределы

Дэвид ди Винченцо, директор Института теоретической наноэлектроники (г. Юлих, Германия), видит эту картину немного иначе. Для него Джорди Роуз и его компания добилась риторической победы: «В моем словаре устройство D-Wave не означает квантовый компьютер». Ди Винченцо знает, о чем он говорит. Физик является пионером в области исследований квантовых компьютеров. Его статья «Вопросы квантовых вычислений» (Topics in Quantum Computing, 1996 г.) до сих пор считается критерием того, насколько действительно квантовым является квантовый компьютер.

Его суждение в отношении D-Wave следующие: их чипы точно обладают особенными характеристиками, однако это еще долго не сделает их квантовым компьютером. Научное объяснение данному факту является довольно сложным. Вкратце: D-Wave формирует в своем чипе квантовые эффекты с целью решения определенных задач, т. н. «квантовый отжиг» (Quantum Annealing).

Для этого задействованы физические эффекты туннелирования, применяемые для использования математических сокращений в задаче оптимизации. Их обработка осуществляется в квантовом вентиле, состоящем из квантовых битов (кубитов): схеме, которая, благодаря сильному охлаждению, переводится в квантовое состояние. Часть этих кубитов переплетается, при этом состояния системы описываются уравнениями квантовой механики. Благодаря принципу суперпозиции все комбинации состояний «0» и «1» данного вентиля кубитов могут обрабатываться одновременно.

Принцип работы квантового компьютера

Давайте вернемся к нашей задачке про трех людей и две машины и рассмотрим ее с точки зрения квантового компьютера:

Для решения подобной системы нам понадобится компьютер с 3 кубитами.

Помните, что классический компьютер должен был пройти все варианты один за одним? Так вот поскольку кубиты одновременно имеют состояния «1» и «0», то и пройти через все варианты он сможет, фактически одновременно!

Знаю, что прозвучит максимально странно, но представьте, что в данной ситуации наши три кубита создают 8 различных параллельных миров, в каждом из которых существует одно решение, а потом они все собираются в один! Реально «Мстители» какие-то!

Но что же получается? Он выдает все варианты сразу, а как получить правильный?

Для этого существуют специальные математические операторы, например оператор Грувера, который позволяет нам определять правильные результаты вычислений квантовых систем! Это специальная функция, которая среди всех возможных вариантов находит нужный нам.

Помните задачку про 100 человек в 2 автобуса, которую не смогли бы решить все современные компьютеры вместе взятые? Для квантового компьютера со 100 кубитами эта задачка все равно что семечку щелкнуть! То есть компьютер находится одновременно в 2 в 100 степени состояний, а именно:

1,267,650,600,228,229,401,496,703,205,376 — вот столько состояний одновременно! Столько параллельных миров!

Думаете, что всё это звучит слишком хорошо, чтобы быть правдой? Да, вы правы. Есть куча нюансов и ограничений. Например, ошибка. Проблема в том, что кубиты, в отличие от обычных битов, не определены строго.

У них есть определенная вероятность нахождения в состоянии 1 или 0. Поэтому есть вероятность ошибки и чем больше кубитов в системе, тем больше суммарная вероятность, что система выдаст неправильный ответ. Поэтому зачастую надо провести несколько расчетов одной и той же задачи, чтобы получить верный ответ.

Ну то есть как верный? Он всегда будет содержать в себе минимальную возможность ошибки вследствие своей сложной квантовой природы, но ее можно сделать ничтожно малой, просто прогнав вычисления множество раз!

Принципы работы квантового компьютера для чайников

Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.

Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»

Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?

Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…

Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.

Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам . Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.

Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.

Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.

Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать. долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.

Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.

С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.

А что сейчас ? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.

Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …

Что такое квантовый компьютер

Квантовый компьютер — это устройство, которое передает информацию и проводит вычисления с помощью квантовой механики (области физики, описывающей поведение элементарных частиц и законы на субатомном уровне).

Обычные компьютеры обрабатывают данные с помощью двоичной системы — каждый бит (ячейка памяти) содержит либо нуль, либо единицу. Квантовые биты (кубиты) содержат и нуль, и единицу одновременно. Это возможно благодаря явлениям квантовой суперпозиции и квантовой запутанности. Другими словами, субатомные частицы могут существовать в нескольких местах одновременно и телепортироваться.

Пример квантового компьютера. Источник

Квантовые компьютеры в будущем смогут проводить вычисления, на которые у обычных компьютеров ушли бы миллионы лет. Например, симулировать движение атомов и молекул, разрабатывать лекарства и вакцины и обрабатывать огромные базы данных.

Зачем нужны квантовые ЭВМ

На этот вопрос затрудняются ответить даже их изобретатели. Благодаря таким компьютерам, можно создать невероятные вещества, с новыми свойствами. Также, подобные компьютеры помогут сделать различные открытия в химии с физикой. Квантовик ближе прочих компьютеров приблизились к искусственному интеллекту.

Что это нам даст? Настанет эра будущего, появятся роботы, как в фантастических фильмах? Кто знает, вполне возможно. Но пока, создание такого компьютера, очень сложно и эра роботов откладывается на неопределённый срок, только вот на какой? А вы что думаете по поводу квантовых компьютеров, мои дорогие читатели? Наступит эра роботов в ближайшее время, или нет? И что нам дадут компьютеры на основе кубитов? Просьба поделиться в комментариях!

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector