Формула прямой проходящей через начало координат

Давайте рассмотрим такие функций, графики которых имеют вид прямых. Простоты ради, мы будем иметь дело с безразмерными величинами, а значит, в качестве осей у нас будут выступать простые числовые прямые, и все наши чертежи мы будем делать на обычной координатной плоскости.

Прямая, проходящая через начало координат

Построение графика по заданной функции

Пусть переменная (y) пропорциональна переменной (x) с коэффициентом пропорциональности (k) :

Давайте договоримся, что (x) здесь — это независимая переменная, а (y) — зависимая. Коэффициент (k) играет роль константы (параметра). В таких случаях говорят, что (y) является (однородной) линейной функцией от (x) . Графиком этой функции, как мы хорошо знаем, является прямая, проходящая через начало координат ((0, 0)) . Для построения этой прямой нам достаточно определить еще какую-либо одну ее точку ((x_1, y_1)) . Для этого положим, например, (x_1 = 1) . Тогда (y_1 = k cdot 1 = k) . Проводим через эту точку и начало координат прямую линию. Это и есть график функции (y) от (x) . Так, по крайней мере, обстоит дело в теории, а на практике точку ((x_1, y_1)) лучше брать настолько далеко от начала координат, насколько позволяет чертеж. В этом стучае прямую удается провести наиболее точно. Ниже приведен пример такого построения для функции (y=frac<1> <2>x) .

Восстановление функции по графику

Решим теперь обратную задачу. Пусть на координатной плоскости с осями (x) и (y) нам дана прямая, проходящая через начало координат. Спрашивается: графиком какой функции она является? При этом подразумевается, что функция должна быть задана в виде формулы, связывающей переменные (x) и (y) . Такая формула носит название уравнения графика функции. В данном случае речь идет об уравнении прямой, проходящей через точку ((0,0)) .

Заранее ясно, что это уравнение имеет вид

От нас фактически только требуется найти значение константы (k) . Для этого отметим на прямой произвольную точку, отличную от ((0,0)) , и определим ее координаты ((x_1, y_1).) Эти координаты, очевидно, связаны соотношением

При этом следует особо подчеркнуть, что константа (k) не зависит от выбора точки ((x_1, y_1).) Какую бы точку на прямой мы не выбрали в качестве ((x_1, y_1),) мы придем к одному и тому же значению (k) . Таким образом,

Пример нахождения уравнения прямой приведен на следующем рисунке.

Отметим два особых случая. Во-первых, прямая может совпасть с осью (x) . Тогда значение (y) остается постоянным и равным нулю на всем ее протяжении. Тем не менее наше общее решение остается в силе. При этом оказывается, что (k = 0) и переменную (y) можно всё еще формально считать функцией от (x) :

Во-вторых, прямая может совпасть с осью (y) . В этом случае в каждой ее точке (x = 0) . Формула для константы (k) оказывается неприменимой, потому что число (x_0) , стоящее в знаменателе, обращается в нуль. Приходится признать, что мы не можем подобрать такую функцию (y) от (x) , которая имела бы подобный график. Разве что, мы можем теперь принять (y) за независимую переменную и формально рассматривать (x) как функцию от (y<:>)

Несложно убедиться, что всякая точка, лежащая на оси (y) , удовлетворяет этому равенству. Заметим, что если бы мы захотели написать уравнение прямой, проходящей через начало координат, в самом общем виде, то мы могли бы это сделать так:

Это соотношение между (x) и (y) остается справедливым в обоих рассмотренных частных случаях, однако выбор параметров не является однозначным, так как в качестве пары чисел ((x_1, y_1)) можно взять координаты любой точки, принадлежащей прямой.

Произвольная прямая

Восстановление функции по графику

Начнем с обратной задачи. Пусть теперь на координатной плоскости дана произвольная прямая, не проходящая через начало координат. Вопрос нас будет интересовать всё тот же: графиком какой функции она является или, короче говоря, каково уравнение этой прямой?

Отметим на прямой две любые несовпадающие точки и обозначим их координаты через ((x_0, y_0)) и ((x_1,y_1)) . Поместим в точку ((x_0, y_0)) начало новой системы координат с осями (x’) и (y’) , сонаправленными с соответствующими осями (x) и (y) старой системы.

Тогда координаты другой отмеченной точки в новой системе окажутся равны

(begin x_1′ \ y_1′ end = begin x_1 \ y_1 end — begin x_0 \ y_0 end = begin x_1 — x_0 \ y_1 — y_0end.)

Вообще, как мы знаем, новые («штрихованные») координаты любой точки связаны со старыми («нештрихованными») координатами соотношением

Наша прямая проходит через начало координат новой системы, поэтому мы можем сразу же выписать ее уравнение в «штрихованных» переменных:

Переходя к «нештрихованным» переменным, получаем

Что и решает поставленную задачу.

При желании, можно еще выразить функцию (y) от (x) в явном виде:

(y = k,x — k,x_0 + y_0)

(y = k,x + b,) где (b = — k,x_0 + y_0.)

Значения констант (k) и (b) не зависят от выбора точек ((x_0, y_0)) и ((x_1,y_1)) . Какие бы точки на заданной прямой мы не взяли, мы всегда придем к одним и тем же значениям (k) и (b) . Заметим, что из-за дополнительного слагаемого (b) переменные (x) и (y) не пропорциональны друг другу. Поэтому константа (k) называется теперь не коэффициентом пропорциональности, как это было раньше, а угловым коэффициентом. Название это происходит от того, что значение (k) тесно связано с углом наклона прямой по отношению к оси (x) . Чем круче идет прямая, тем больше ее угловой коэффициент.

Константу (b) иногда называют свободным членом. Как легко видеть, переменная (y) равна (b) при (x = 0) . Иными словами, (b) — это точка на оси (y) , в которой эта ось пересекается с нашей прямой. Если (b = 0) , то прямая проходит через начало координат, и мы возвращаемся к частному случаю, рассмотренному ранее.

Из наших рассуждений следует, что любая прямая на координатной плоскости может быть описана уравнением вида

при подходящем выборе констант (k) и (b) . Единственным исключением является особый случай, когда в выражении для углового коэффициента (k = frac) знаменатель обращается в ноль. Это происходит, если (x_1 = x_0) . Это значит, что прямая перпендикулярна оси (x) (и соответственно параллельна оси (y) ). При таких обстоятельствах (x) неизбежно утрачивает роль независимой переменной, но может формально рассматриваться как функция от (y) :

(x = 0 cdot (y — y_0) + x_0.)

В совершенно общем виде уравнение прямой можно написать следующим образом:

((x_1-x_0) (y-y_0) = (y_1-y_0) (x-x_0).)

При этом, однако, выбор двух пар параметров ((x_0, y_0)) и ((x_1, y_1)) (которые, по смыслу, являются координатами двух произвольных точек, лежащих на прямой) неоднозначен.

Построение графика по заданной функции

Теперь давайте выясним, как построить график неоднородной линейной функции (y) от (x) , которая определяется как

где (k) и (b) — любые действительные числа. Как мы только что выяснили, к такому виду сводится уравнение произвольной прямой (при условии, что она не параллельна оси (y) ). Строго говоря, это не исключает, что при некоторых значения параметров (k) и (b) график этой функции может отличаться от прямой линии. Давайте убедимся, что этого никогда не происходит. Перепишем данное нам уравнение следующим образом:

Если перейти в новую, штрихованную, систему координат с началом в точке ((0, b)) и с осями (x’) и (y’) , сонаправленными с соответствующими осями старой системы, то в новых координатах уравнение примет вид:

Мы получим тогда не что иное, как уравнение пропорциональной зависимости, которое гарантировано задает прямую линию. Значит, и график неоднородной линейной функции

представляет собой прямую линию при любых значениях параметров (k) и (b) . Но для того, чтобы построить прямую, достаточно знать две ее произвольные точки ((x_0, y_0)) и ((x_1, y_1)) . В качестве (x_0) и (x_1) можно взять, например, соответственно ноль и единицу. Тогда

(y_0 = b) (при (x_0 = 0) ),
(y_1 = k+b,) (при (x_1 = 1) ).

Проводим прямую через точки ((x_0, y_0)) и ((x_1, y_1)) — и задача решена. На практике, впрочем, лучше брать такие точки, которые расположены друг от друга по возможности дальше, насколько позволяет чертеж. Пример графика неоднородной линейной функции со значением параметров (k = frac<1><3>) и (b = 1) представлен на следующем рисунке.

Конспект

(1) . Линейная функция (y = k,x + b) называется однородной при (b = 0) и неоднородной при (b ne 0.) Ее график на координатной плоскости представляет собой прямую линию, которая строится по двум произвольным точкам.

(2) . Уравнение прямой, проходящей через начало координат: (y = frac x,) где ((x_1, y_1)) — координаты произвольной точки, принадлежащей этой прямой ((x_1 ne 0).) Исключение: прямая совпадает с осью (y) . Тогда уравнение прямой: (x = 0.)

(3) . Уравнение произвольной прямой: (y-y_0 = frac (x-x_0),) где ((x_0, y_0)) и ((x_1, y_1)) — координаты двух различных произвольных точек, принадлежащих этой прямой. Исключение: прямая проходит через точку ((x_0, y_0)) параллельно оси (y) . Тогда уравнение прямой: (x = x_0) .

Уравнение прямой

Уравнение прямой на плоскости

Любую прямую на плоскости можно задать уравнением прямой первой степени вида

где A и B не могут быть одновременно равны нулю.

Уравнение прямой с угловым коэффициентом

Общее уравнение прямой при B≠0 можно привести к виду

где k — угловой коэффициент равный тангенсу угла, образованного данной прямой и положительным направлением оси ОХ.

Уравнение прямой в отрезках на осях

Если прямая пересекает оси OX и OY в точках с координатами ( a , 0) и (0, b ), то она может быть найдена используя формулу уравнения прямой в отрезках

x + y = 1
a b

Уравнение прямой, проходящей через две различные точки на плоскости

Если прямая проходит через две точки M( x 1, y 1) и N( x 2, y 2), такие что x 1 ≠ x 2 и y 1 ≠ y 2, то уравнение прямой можно найти, используя следующую формулу

x — x 1 = y — y 1
x 2 — x 1 y 2 — y 1

Параметрическое уравнение прямой на плоскости

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0 y = m t + y 0

где N( x 0, y 0) — координаты точки лежащей на прямой, a = < l , m >— координаты направляющего вектора прямой.

Каноническое уравнение прямой на плоскости

Если известны координаты точки N( x 0, y 0) лежащей на прямой и направляющего вектора a = ( l и m не равны нулю), то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0 = y — y 0
l m

Решение. Воспользуемся формулой для уравнения прямой проходящей через две точки

x — 1 2 — 1 = y — 7 3 — 7

Упростив это уравнение получим каноническое уравнение прямой

Выразим y через x и получим уравнение прямой с угловым коэффициентом

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

x = t + 1 y = -4 t + 7

Решение. Так как M y — N y = 0, то невозможно записать уравнение прямой проходящей через две точки.

Найдем параметрическое уравнение прямой. В качестве направляющего вектора можно взять вектор MN .

Взяв в качестве координат точки лежащей на прямой, координаты точки М, запишем параметрическое уравнение прямой

Уравнение прямой в пространстве

Уравнение прямой, проходящей через две различные точки в пространстве

Если прямая проходит через две точки M( x 1, y 1, z 1) и N( x 2, y 2, z 2), такие что x 1 ≠ x 2, y 1 ≠ y 2 и z 1 ≠ z 2, то уравнение прямой можно найти используя следующую формулу

x — x 1 = y — y 1 = z — z 1
x 2 — x 1 y 2 — y 1 z 2 — z 1

Параметрическое уравнение прямой в пространстве

Параметрические уравнения прямой могут быть записаны следующим образом

x = l t + x 0
y = m t + y 0
z = n t + z 0

где ( x 0, y 0, z 0) — координаты точки лежащей на прямой, — координаты направляющего вектора прямой.

Каноническое уравнение прямой в пространстве

Если известны координаты точки M( x 0, y 0, z 0) лежащей на прямой и направляющего вектора n = , то уравнение прямой можно записать в каноническом виде, используя следующую формулу

x — x 0 = y — y 0 = z — z 0
l m n

Прямая как линия пересечения двух плоскостей

Если прямая является пересечением двух плоскостей, то ее уравнение можно задать следующей системой уравнений

Уравнение прямой на плоскости

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Оно называют общим уравнением. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

• C = 0, А ≠0, В ≠ 0 – проходит через начало координат

• А = 0, В ≠0, С ≠0 < By + C = 0>— параллельна оси Ох

• В = 0, А ≠0, С ≠ 0 < Ax + C = 0>– параллельна оси Оу

• В = С = 0, А ≠0 – совпадает с осью Оу

• А = С = 0, В ≠0 – совпадает с осью Ох

Уравнение прямой на плоскости может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой Ах + Ву + С = 0.

Пример 1. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно, С = -1. Окончательно получим: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой, проходящей через две точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.На плоскости, записанное выше, упрощается:

Дробь = k называется угловым коэффициентом .

Пример 2. Найти уравнение прямой, проходящей через две точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту

Если общее уравнение прямой на плоскости Ах + Ву + С = 0 привести к виду:

и обозначить , то получим уравнением прямой с угловым коэффициентом k .

Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение через вектор нормали можно ввести задание прямой через точку и направляющий вектор.

Определение. Каждый ненулевой вектор ( α1 , α2 ), компоненты которого удовлетворяют условию А α1 + В α2 = 0 называется направляющим вектором прямой

Пример 3. Найти уравнение прямой, проходящей через точку А(1, 2) с направляющим вектором (1, -1).

Решение.Будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда получим вид: Ax + Ay + C = 0, или x + y + C / A = 0. при х = 1, у = 2 получаем С/ A = -3, т.е. искомое:

Уравнение прямой в отрезках

Если в общем уравнении Ах + Ву + С = 0 С≠0, то, разделив на –С, получим: или

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения с осью Оу.

Пример 4. Задано общее уравнение х – у + 1 = 0. Найти его в виде уравнение прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой

Если уравнение прямой на плоскости Ах + Ву + С = 0 умножить на число , которое называется нормирующем множителем , то получим

xcosφ + ysinφ — p = 0 –

нормальное уравнение. Знак ± нормирующего множителя надо выбирать так, чтобы μ * С 2 .

Решение.Искомое уравнение имеет вид: , ab /2 = 8; ab=16; a=4, a=-4. a = -4 Copyright © 2004-2020

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат

Уравнение прямой имеет вид: , где х1 = у1 = 0; x2 = -2; y2 = -3.

4.Определить угол между прямыми: y = -3x + 7; y = 2x + 1.

k1 = -3; k2 = 2 tgj = ; j = p/4.

5.Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Находим: k1 = 3/5, k2 = -5/3, k1k2 = -1, следовательно, прямые перпендикулярны.

6. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С.

Находим уравнение стороны АВ: ; 4x = 6y – 6;

2x – 3y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b.

k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3x + 2y – 34 = 0.

Тема №2-4. Кривые 2 порядка: окружность, эллипс,гипербола,парабола.

Построение кривых 2 порядка. Составление уравнений кривых 2-го порядка.

Кривая второго порядка задана уравнением Ах 2 + 2Вху + Су 2 + 2Dx + 2Ey + F = 0.

Существует система координат (не обязательно декартова прямоугольная), в которой данное уравнение может быть представлено в одном из видов, приведенных ниже.

1) — уравнение эллипса.

2) — уравнение “мнимого” эллипса.

3) — уравнение гиперболы.

4) a 2 x 2 – c 2 y 2 = 0 – уравнение двух пересекающихся прямых.

5) y 2 = 2px – уравнение параболы.

6) y 2 – a 2 = 0 – уравнение двух параллельных прямых.

7) y 2 + a 2 = 0 – уравнение двух “мнимых” параллельных прямых.

8) y 2 = 0 – пара совпадающих прямых.

9) (x – a) 2 + (y – b) 2 = R 2 – уравнение окружности.

Рассмотрим кривые 2 порядка: окружность, эллипс, гиперболу, параболу.Окружностью называется геометрическое место точек, равноудалённых от данной точки О, называемой центром окружности, на расстояние R . Число R > 0 называется радиусом окружности.

Уравнение окружности радиуса R с центром в точке О ( х0 , у 0 ) имеет вид:

( х – х0 ) 2 + ( у – у 0 ) 2 = R 2 .

Если центр окружности совпадает с началом координат, то уравнение окружности упрощается:

Пусть Р ( х1 , у 1 ) – точка окружности ( рис.1 ), тогда уравнение касательной к окружности в данной точке имеет вид:

Условие касания прямой y = m x + k и окружности х 2 + у 2 = R 2 :

k 2 / ( 1 + m 2 ) = R 2 .

Эллипс

Эллипсомназывается геометрическое место точек, сумма расстояний от которых до двух заданных точек F1 и F2 , называемых фокусами эллипса, есть величина постоянная.

Уравнение эллипса( рис.1 ) :

Здесь начало координат является центром симметрии эллипса, а оси координат – его осями симметрии. При a > b фокусы эллипса лежат на оси ОХ ( рис.1 ) , при a CD = 2 b – малой осью эллипса. Число e = c / a , e 2 / a 2 + у 2 / b 2 = 1 :

k 2 = m 2 a 2 + b 2 .

Гипербола

Гиперболой( рис.1 ) называется геометрическое место точек, модуль разности расстояний от которых до двух заданных точек F1 и F2 , называемых фокусами гиперболы, есть величина постоянная.

Уравнение гиперболы( рис.1 ) :

Здесь начало координат является центром симметрии гиперболы, а оси координат – её осями симметрии.

Отрезок F1F2 = 2 с , где , называется фокусным расстоянием. Отрезок AB = 2 a называется действительной осью гиперболы, а отрезок CD = 2 b – мнимой осью гиперболы. Число e = c / a , e > 1 называется эксцентриситетом гиперболы. Прямые y = ± ( b / a ) x называются асимптотами гиперболы.

Пусть Р ( х1 , у 1 ) – точка гиперболы, тогда уравнение касательной к гиперболев данной точке имеет вид:

Условие касания прямой y = m x + k и гиперболы х 2 / a 2 – у 2 / b 2 = 1 :

k 2 = m 2 a 2 – b 2 .

Парабола

Параболой( рис.1 ) называется геометрическое место точек, равноудалённых от заданной точки F , называемой фокусом параболы, и данной прямой, не проходящей через эту точку и называемой директрисой параболы.

Уравнение параболы( рис.1 ) :

Здесь ось ОХ является осью симметрии параболы.

Пусть Р ( х1 , у 1 ) – точка параболы, тогда уравнение касательной к параболев данной точке имеет вид:

Условие касания прямой y = m x + k и параболы y 2 = 2 p x :

1.Найдите все параметры, характеризующие данные кривые второго порядка. Определите типы этих кривых, сделайте рисунки.
а) 9x² + 64y²=576
б) y²=6x

в) 9x 2 -16y 2 =144

Решение.

a) 9x²+ 64y² = 576 — уравнение эллипса

— каноническое уравнение эллипса
a = = 8 и b = = 3 — полуоси эллипса

Точки А(8,0), А'(-8,0), В(0,3), В'(0,-3) — вершины эллипса

с =

Точки F( ,0) и F'(- ,0) — фокусы эллипса

ε = с/а =( )/8 — эксцентриситет эллипса

б) y² = 6x — уравнение параболы, симметричной относительно оси Ox,

т.е. прямая у = 0 — ось симметрии.
2р = 6
р = 3
Точка F(3/2,0) — фокус параболы.
Прямая х = -3/2 — директриса параболы

в) Приведем данное уравнение к каноническому виду (разделив его на 144):

Отсюда следует, что a 2 =16, b 2 =9. Следовательно, a=4 -действительная полуось, b=3 — мнимая полуось. Тогда Значит, фокусы имеют координаты F1(-5,0), F2(5,0). Находим эксцентриситет
Уравнения асимптот имеют вид у = , а уравнения директрис .

2. Определить вид и расположение кривой

Решение.

Дополним члены, содержащие х и у соответственно, до полных квадратов:

Следовательно, кривая, заданная исходным уравнением, представляет собой эллипс с полуосями

Центр эллипса находится в точке щ .

3. Найти координаты центра и радиус окружности x 2 +y 2 -6x+10y-15=0.

Решение.

В данном уравнении выделим полные квадраты, прибавляя и вычитая соответствующие числа. Получаем

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector