Господа, всем приветище! Сегодня речь пойдет про энергию конденсаторов. Внимание, сейчас будет спойлер: конденсатор может накапливать в себе энергию. Причем иногда очень большую. Что? Это не спойлер, это и так было всем очевидно? Здорово если так! Тогда поехали в этом более подробно разбираться!
В прошлой статье мы пришли к выводу, что заряженный конденсатор, отсоединенный от источника напряжения, может сам в течении некоторого времени (пока не разрядится) давать некоторый ток. Например, через какой-то резистор. По закону Джоуля-Ленца если через резистор течет ток, то на нем выделяется тепло. Тепло – значит, энергия. И берется эта самая энергия из конденсатора – больше, собственно, неоткуда. Значит, в конденсаторе может хранится некоторая энергия. Итак, физика процессов более-менее понятна, поэтому теперь давайте поговорим, как это все описать математически. Потому что одно дело все описать на словах – это круто, замечательно, это должно быть, но в жизни часто надо что-то рассчитать и тут уже обычных слов не достаточно.
Для начала давайте вспомним определение работы из механики. Работа A силы F это произведение этой самой силы F на вектор перемещения s.
Полагаю, что механику вы изучали когда-то и это знаете . Страшные значки векторов нужны только в случае, если направление силы не совпадает с перемещением: вроде случая, когда сила тянет строго прямо, а перемещение идет под каким-то углом к силе. Такое бывает, например, когда груз перемещается по наклонной плоскости. Если же направление силы и перемещения совпадают, то можно смело отбросить вектора и просто перемножать силу на длину пути, получая таким образом работу:
Вспомним теперь статью про закон Кулона. Мы там получили замечательную формулу, которую сейчас самое время вспомнить:
То есть, если у нас есть электрическое поле с напряженностью Е и мы в него помещаем некоторый заряд q, то на этот заряд будет действовать сила F , которую можно рассчитать по этой формуле.
Нам никто не мешает подставить эту формулу в чуть выше написанную формулу для работы. И таким образом найти работу, которую совершает поле при перемещении в нем заряда q на расстояние s. Будем полагать, что мы перемещаем наш заряд q точно по направлению силовых линий поля. Это позволяет использовать формулу работы без векторов:
Теперь, господа, внимание. Напоминаю одну важную штуку из той же механики. Есть такой особый класс сил, которые называются потенциальные. Если говорить упрощенным языком, то для них верно утверждение, что если эта сила на каком-то отрезке пути совершила работу А, то это значит, что в начале этого пути у тела, над которым совершалась работа, энергия была на это самое А больше, чем в конце. То есть на сколько поработали, на столько и изменилась потенциальная энергия. Работа потенциальных сил не зависит от траектрии и определяется только начальной и конечной точкой. А на замнкнутом пути она вообще равна нулю. Как раз-таки сила электрического поля относится к этому классу сил.
Вот мы помещаем наш зарядик q в поле. Он под действием этого поля перемещается на некоторое расстояние от точки С до точки D. Пусть для определенности в точке D энергия заряда будет равна 0. При этом перемещении поле совершает работу А. Из этого следует, что в начале пути (в точке C) наш зарядик обладал некоторой энергией W=A. То есть, мы можем записать
Теперь самое время рисовать картинки. Взглянем на рисунок 1. Это немного упрощенная иллюстрация физики процессов плоского конденсатора. Более полное мы рассматривали это в прошлый раз.
Рисунок 1 – Плоский конденсатор
Давайте теперь чуть-чуть искривим свое сознание и глянем на наш конденсатор по-другому, чем раньше. Давайте предположим, что у нас за основу взята, например, синяя пластина . Она создает некоторое поле с некоторой напряженностью. Безусловно, и красная пластина тоже создает поле, но в данный момент это не интересно. Давайте смотреть на красную пластину , как на некоторый заряд +q , расположенный в поле синей пластины. И сейчас мы попробуем применить все вышеописанное к красной пластине как будто это и не пластина вовсе, а просто некоторый заряд +q. Вот так вот хитро. Почему, собственно, нет? Возможно, вы скажите – как же так, раньше мы везде исходили из того, что заряды у нас точечные, а тут – целая большая пластина. Она как-то на точку не совсем тянет. Спокойствие, господа. Никто нам не мешает разбить красную пластину на огромную кучу маленьких частичек, каждую из которых можно считать точечным зарядом Δq . Тогда уже можно без проблем применять все вышеописанное . И если мы выполним все расчеты сил, напряженностей, энергий и прочего для вот таких вот отдельных Δq и потом сложим результаты между собой, то получится, что мы зря так переусердствовали – результат будет ровно таким же, как если бы мы просто при расчетах брали заряд +q. Кто хочет – может проверить, я только за . Однако мы будем сразу работать по упрощенной схеме. Хотелось бы только отметить, что это верно для случая, когда поле у нас однородно и заряды по всем пластинам распределены равномерно. В действительности это не всегда так, однако такое упрощение позволяет существенно облегчить все расчеты и избежать всяких градиентов и интегралов без существенного вреда для практики.
Итак, вернемся к рисунку 1. На нем показано, что между обкладками конденсатора существует поле с некоторой напряженностью Е. Но мы договорились сейчас разделить роли обкладок – синяя у нас источник поля, а красная – заряд в поле. Какое же поле создает одна синяя обкладка отдельно от красной? Какова его напряженность? Очевидно, что она в два раза меньше общей напряженности. Почема это так? Да потому, что если забыть про нашу абстракцию (типа красная пластина – и не пластина вовсе, а просто заряд), то в результирующую напряженность Е вносят одинаковый вклад обе обкладки – и красная, и синяя: каждая по Е/2. В результате суммы этих Е/2 как раз и получается та самая Е, которая у нас на картинке. Таким образом (отбрасывая вектора), можно записать
Теперь посчитаем, если можно так выразиться, потенциальную энергию красной обкладки в поле синей обкладки. Заряд мы знаем, напряженность мы знаем, расстояние между обкладками тоже знаем. Поэтому смело записываем
Идем дальше. На деле же никто не мешает поменять местами красную и синюю обкладки. Давайте рассуждать наоборот. Будем рассматривать теперь красную обкладку как источник поля , а синюю – как некоторый заряд –q в этом поле. Думаю, даже без проведения расчета будет очевидно, что результат будет точно такой же. То есть энергия красной пластины в поле синей пластины равна энергии синей пластины в поле красной пластины. И, как вы возможно уже догадались, это и есть энергия конденсатора. Да, вот по этой самой формуле можно произвести расчет энергии заряженного конденсатора:
Слышу, как мне уже кричат: стоп, стоп, опять ты втираешь мне какую-то дичь! Ну ладно, расстояние между пластинами я еще как-то смогу измерить. Но меня почему-то опять заставляют считать заряд, что не понятно как сделать, да еще и напряженность надо знать, а чем я ее померяю?! Мультиметр вроде как не умеет это делать! Все верно, господа, сейчас мы займемся преобразованиями, которые позволят вам измерить энергию конденсатора всего лишь с применением обыкновенного мультиметра.
Давайте сперва избавимся от напряженности. Для этого вспомним замечательную формулу, которая связывает напряженность с напряжение:
Да, напряжение между двумя точками в поле равно произведению напряженности этого поля на расстояние между этими двумя точками. Итак, подставляя это полезнейшее выражение в формулу для энергии, получаем
Уже легче, напряженность ушла. Но остался еще заряд, который не понятно как мерить. Что бы от него избавиться, давайте вспомним формулу емкости конденсатора из предыдущей статьи:
Да, для тех, кто забыл, напоминаю, что емкость определяется как отношение этого злополучного заряда, накопленного конденсатором, к напряжению на конденсаторе. Давайте из этой формулы выразим заряд q и подставим его в формулу энергии конденсатора. Получаем
Вот это уже дельная формула, для энергии заряженного конденсатора! Если нам нужно узнать, какая энергия запасена в конденсаторе с емкостью С, заряженного до напряжения U, мы вполне можем это сделать по вот этой вот формуле. Емкость С обычно пишется на самом конденсаторе или на его упаковке, а напряжение всегда можно измерить мультиметром. Из формулы видно, что энергии в конденсаторе тем больше, чем больше емкость самого конденсатора и напряжение на нем. Причем энергия растет прямо пропорционально квадрату напряжения. Это важно помнить. Увеличение напряжения гораздо быстрее приведет к росту энергии, запасенной в конденсаторе, чем увеличение его емкости.
Для особых любителей зарядов можно из формулы определения емкости выразить не заряд, а напряжение и подставить его в формулу для энергии конденсатора. Таким образом, получаем еще одну формулу энергии
Используется эта формула довольно редко, а на практике вообще не припомню, что б по ней что-то считал, но раз она есть, то путь тут тоже будет для полноты картины. Самая ходовая формула – это средняя.
Давайте для интереса произведем некоторые расчеты. Пусть у нас есть вот такой вот конденсатор
Рисунок 2 – Конденсатор
И давайте мы его зарядим до напряжения, скажем, 8000 В. Какая энергия будет запасена в таком конденсаторе? Как мы видим из фотографии, емкость данного конденсатора составляет 130 мкФ. Теперь легко выполнить расчет энергии:
Много это или мало? Безусловно, не мало! Даже очень не мало! Скажем так, разрешенная энергия электрошокеров составляет какие-то там смешные единицы джоулей, а тут их тысячи! Принимая во внимание высокое напряжение (8кВ) можно смело утверждать, что для человека контакт с таким заряженным конденсатором скорее всего закончится очень и очень печально. Следует соблюдать особую осторожность при больших напряжениях и энергиях! У нас был случай, когда произошло короткое замыкание нескольких таких вот конденсаторов, соединенных параллельно и заряженных до нескольких киловольт. Господа, это было зрелище не для слабонервных! Бабахнуло так, что у меня потом в ушах пол дня звенело! А на стенах лаборатории осела медь от расплавленных проводов! Спешу успокоить, никто не пострадал, но это стало хорошим поводом дополнительно подумать над способами отвода такой гигантской энергии в случае нештатных ситуаций.
Кроме того, господа, важно всегда помнить, что конденсаторы блоков питания приборов тоже не могут мгновенно разрядиться после отключения прибора от сети, хотя там, безусловно, должно быть какие-то цепи, предназначенные для их разряда. Но должны быть, это не значит, что они там точно есть . Поэтому в любом случае после отключения любого прибора от сети, прежде чем лезть к нему внутрь, лучше подождать пару минут для разряда всех кондеров. И потом, после снятия крышки, прежде чем лапками хвататься за все подряд, следует сначала померить напряжение на силовых накопительных конденсаторах и при необходимости выполнить их принудительный разряд каким-нибудь резистором. Можно, конечно, просто отверткой замкнуть их выводы, если емкости не слишком большие, но такое делать крайне не рекомендуется!
Итак, господа, сегодня мы познакомились с различными методами расчета энергии, запасенной в конденсаторе, а также обсудили, как эти расчеты можно выполнять на практике. На этом потихоньку закругляемся. Всем вам удачи, и до новых встреч!
Вступайте в нашу группу Вконтакте
Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.
Энергия конденсатора
Этот двухполюсный элемент применяют в разных электрических схемах. Способность к накоплению энергии с последующей отдачей в цепь используют для фильтрации сигналов, создания колебательного контура, решения иных практических задач.
Что такое конденсатор
Конструкция простейшего устройства этой категории состоит их двух проводящих пластин с диэлектриком в промежутке. Подключением такого устройства к источнику постоянного тока накапливают на рабочих элементах положительные и отрицательные заряды. После разрыва цепи питания энергетический потенциал сохраняется.
Электроемкость
Этим термином характеризуют накопительные способности пассивного элемента. В обозначениях серийных изделий указывают номинальное значение. Так как базовая единица (Ф, фарад) слишком велика, пользуются уменьшительными приставками для обозначения часто применяемых электронных компонентов:
- миллифарад (мФ) – 10-3 Ф;
- нанофарад (нФ) – 10-9 Ф;
- пикофарад (пФ) – 10-12 Ф.
Один фарад соответствует емкости, при которой накопленный единичный заряд (1Кл) создаст разницу потенциалов на пластинах 1 В.
Определение энергии конденсатора
Чтобы выяснить, от чего будут зависеть накопительные характеристики, можно применить две методики. Первая – это определение работы, которая выполняется для распределения зарядов на обкладках. Подразумевается, что для этого понадобится затратить определенную энергию. Во втором варианте пользуются притяжением разноименных зарядов. Для перемещения пластин до прямого контакта нужно выполнить соответствующую работу.
Энергия поля плоского конденсатора
Для упрощения можно рассмотреть пример с перемещением разноименно заряженных пластин. Сформированная сила притяжения (F) будет измеряться величиной заряда (q) и напряженностью поля (E) между соответствующими обкладками:
Так как E = q/(2*e0*S), несложно получить выражение для значения силового взаимодействия:
где:
- e0 – это электрическая постоянная = 8,854 * 10-12 Ф*м-1;
- S – площадь пластин.
Работа (A) равна произведению силы на пройденное расстояние (d), поэтому W (энергия плоского конденсатора) = A = F * d = d *q2/(2*e0*S). Емкость (С) определяется, как C = d /(e0*S). Следующими преобразованиями можно получить итоговое выражение:
- W = q2/(2*C);
- q = C * U;
- энергия конденсатора формула:
Для чего знать энергию
Даже приблизительный расчет этого параметра для многих радиотехнических схем не нужен. Функциональный фильтр, например, создают только с учетом емкости. Однако в некоторых устройствах энергия заряженного конденсатора имеет определяющее значение.
Комплект конденсаторов накапливает достаточное количество энергии для освещения объекта съемки.
Величина энергии
Как будет вычисляться накопленный энергетический потенциал, разобраться можно с помощью показанного на снимке блока фотовспышки. Следует напомнить о том, что для увеличения емкости применяют параллельное соединение (Cобщ = C1 + C2 +…+ Cn). При последовательном варианте пропорциональная зависимость обратная (1/Cобщ = 1/C1 + 1/C2 +…+ 1/Cn).
Расчет:
- 2 емкости по 400 мкФ (Cобщ = C1 + C2 = 400 + 400 = 800 мкФ);
- источник питания будет заряжать элемент напряжением 300 В;
- энергия конденсатора W = ½ *C * U2 = ½ * 800 * 10-6 * 300 = 0,12 джоуля.
Виды конденсаторов
Основные технические параметры этих изделий во многом зависят от проницаемости и других свойств промежутка между обкладками. В частности, проходящий через этот слой ток определяет длительность сохранения запаса энергии. По материалу диэлектрика различают следующие виды конденсаторов:
- вакуумный;
- воздушный (газовый);
- жидкий;
- твердый неорганический (слюда)/ органический (бумажный);
- полимерный;
- электролитический;
- оксидный.
Для улучшения потребительских параметров используют различные комбинации представленных материалов.
Серийные модели постоянной емкости рассчитаны на сохранение исходных характеристик на протяжении всего срока службы. Также выпускают переменные модели. Для увеличения (уменьшения) емкости применяют:
- механический ручной или электрический привод;
- изменение напряжения (варикапы) или температуры.
Также применяют классификацию по форме и взаимному расположению обкладок. Специальные конденсаторы (пусковые, высоковольтные и др.) создают для решения отдельных задач.
Использование конденсаторов
Подученное соотношение величин характерно для всех типов конденсаторов. Его используют для того, чтобы определить накопленную энергию при подключении к источнику питания. Измерить напряжение на выводах можно с помощью мультиметра. Кроме емкости, на корпусе конденсатора указывают другие важные параметры:
- рабочий ток;
- номинальное напряжение;
- диэлектрический материал;
- тип элемента.
К сведению. На миниатюрных деталях места для размещения всех данных недостаточно. Применяют систему сокращенных кодировок. Необходимые сведения уточняют в сопроводительной документации либо на официальном сайте производителя.
В следующем перечне приведены примеры электротехнических схем и устройств, которые создают с применением конденсаторов:
- частотный (сглаживающий) фильтр;
- колебательный контур;
- накопитель энергии для формирования мощного импульса (лазер, фотовспышка);
- ограничитель силы тока (компенсатор подключаемой реактивной нагрузки);
- измерение перемещений (изменение емкости при сближении/ отдалении обкладок).
Для автоматизированного расчета типовой схемы можно использовать специализированный калькулятор онлайн. Следующий пример демонстрирует расчет корректного подключения электродвигателя:
- соединение обмоток – треугольник;
- мощность потребления – 1 200 Вт;
- напряжения сети – 220 В;
- cos ϕ – 0,9;
- КПД – 85%;
- емкость рабочего (пускового) конденсатора – 52 (130) мкФ.
Конденсатор или аккумулятор
Использование таких изделий вместо АКБ ограничено незначительной емкостью серийных электролитических моделей. Ситуация изменилась с появлением ионисторов, которые отличаются увеличенной емкостью (до десятков тыс. фарад). Ниже перечислены особенности, которые следует учесть при сравнении конденсаторов и аккумуляторных батарей.
Преимущества ионисторов:
- длительное сохранение хороших рабочих параметров;
- широкий температурный диапазон (от -40°C до + 60°C);
- надежность;
- простота обращения;
- разумная стоимость.
Недостатки:
- быстрый самостоятельный разряд (15-25% за 24 часа);
- сравнительно небольшой запас энергии (1-1,5 мА на 1 Ф).
Для правильного применения конденсаторов требуется точный предварительный расчет. Как накопители энергии, эти элементы применяют в комплекте с солнечными батареями. В таких наборах при непрерывной эксплуатации обозначенные потери можно признать приемлемыми. Если придется отключить источник питания на длительный срок, предпочтительным выглядит использование АКБ.
Видео
Энергия поля конденсатора
При решении задач, связанных с определением энергии поля, важно помнить, что при отключении конденсатора от источника питания он сохраняет заряд, а если конденсатор остается подключенным к источнику, то напряжение будет постоянно.
Задача 1. Расстояние между пластинами плоского конденсатора уменьшили в 2 раза. Во сколько раз изменятся: заряд на пластинах, напряжение между пластинами, напряженность поля между пластинами и энергия конденсатора. Рассмотреть два случая: а) конденсатор отключен от источника напряжения; б) конденсатор остается присоединенным к источнику постоянного напряжения.
а) Если конденсатор отключен от питания, то он сохраняет заряд. Следовательно, в этом случае заряд не изменится. Емкость же вырастет вдвое, так как
уменьшится вдвое (ведь емкость выросла).
Напряженность поля зависит только от заряда и поэтому тоже не изменится.
б) Если конденсатор подключен к источнику питания, то , и
– энергия увеличится вдвое. Так как емкость выросла вдвое, следовательно, вдвое вырос и заряд конденсатора. А это значит, что и напряженность поля также вдвое увеличится.
Задача 2. Заряженный конденсатор подключили параллельно к такому же, незаряженному. Во сколько раз изменилась энергия поля первого конденсатора?
При параллельном подключении заряд поделится между двумя конденсаторами поровну. Поэтому, так как
То энергия изменится в 4 раза:
Задача 3. Плотность энергии заряженного конденсатора Дж/м. С какой силой взаимодействуют обкладки конденсатора, если их площадь м?
Сила взаимодействия пластин:
Задача 4. Определить энергию заряженного плоского конденсатора с твердым диэлектриком по следующим данным: объем диэлектрика м, относительная диэлектрическая проницаемость , напряженность поля в диэлектрике В/м.
Ответ: мДж.
Задача 5. Определить энергию, перешедшую в тепло при соединении конденсаторов одноименно заряженными обкладками. Емкость первого конденсатора мкФ, второго мкФ. Напряжение на первом конденсаторе до соединения В, а на втором – В.
Энергия первого конденсатора:
А после соединения заряд перераспределится и поэтому энергия системы будет равна
Где . Заряд первого конденсатора
Электрическая емкость. Конденсаторы
Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость вещества. Электроемкость. Конденсаторы. Поле плоского конденсатора. Электроемкость плоского конденсатора. Последовательное и параллельное соединение конденсаторов. Энергия заряженного конденсатора.
Проводники и диэлектрики в электростатическом поле
Вещества в природе можно разделить на проводники и диэлектрики.
Основная особенность — наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.
Типичные проводники — металлы.
Диэлектрическая проницаемость вещества
В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды — индукционными зарядами.
В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.
Физическая величина, равная отношению модуля напряженности (vec
Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда (q) одного из проводников к разности потенциалов (Delta varphi) между ними:
Единицы измерения: (displaystyle [text<Ф>]) (фарад).
Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.
Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами , а проводники, составляющие конденсатор, — обкладками .
Плоский конденсатор — система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.
Электроемкость плоского конденсатора
Разность потенциалов (Delta varphi) между пластинами в однородном электрическом поле равна (Ed) , где (d) — расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:
Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в (varepsilon) раз:
Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.
Последовательное и параллельное соединение конденсаторов
Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.
Последовательное соединение конденсаторов
При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику тока одной из своих пластин. Заряд одинаков на всех пластинах , но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.
Напряжение на данном участке цепи соотносятся следующим образом:
Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:
Сократив выражение на (Q) , получим формулу:
Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:
Параллельное соединение конденсаторов
При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.
Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:
Так как заряд конденсатора
А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов
По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.
Энергия заряженного конденсатора
Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии того, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится. Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке.
Вычислим эту энергию: начнём с плоского воздушного конденсатора.
Ответим на такой вопрос: какова силу притяжения его обкладок друг к другу. Величины используем следующие: заряд конденсатора (q) , площадь обкладок (S) . Возьмём на второй обкладке настолько маленькую площадку, что заряд (q_0) этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой
где (E_1) — напряжённость поля первой обкладки:
Направлена эта сила параллельно линиям поля (т.е. перпендикулярно пластинам). Результирующая сила (F) притяжения второй обкладки к первой складывается из всех этих сил (F_0) , с которыми притягиваются к первой обкладке всевозможные маленькие заряды (q_0) второй обкладки. При этом суммировании постоянный множитель (displaystyledfrac<2varepsilon_0S>) вынесется за скобку, а в скобке просуммируются все (q_0) и дадут (q) . В результате получим
Предположим теперь, что расстояние между обкладками изменилось от начальной величины (d_1) до конечной величины (d_2) . Сила притяжения пластин совершает при этом работу [A = F(d_1 -d_2)]
Знак правильный: если пластины сближаются ((d_2 , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины ((d_2 > d_1)) , то работа силы притяжения получается отрицательной, как и должно быть.
Это можно переписать следующим образом: [A =-(W_2-W_1) =-Delta W,]
Работа потенциальной силы (F) притяжения обкладок оказалась равна изменению со знаком минус величины (W) . Это как раз и означает, что (W) — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора. Используя соотношение (q = CU) , можно получить ещё две формулы для энергии конденсатора (проделать это самостоятельно).
Формулы (1)—(3) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.
Энергия накопленная в конденсаторе
«Физика — 10 класс»
Как и любая система заряженных тел, конденсатор обладает энергией.
Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно.
Энергия заряженного конденсатора.
Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов.
Согласно закону сохранения энергии эта работа равна энергии конденсатора.
В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.14.37).
При разрядке конденсатора лампа вспыхивает.
Энергия конденсатора превращается в тепло и энергию света.
Выведем формулу для энергии плоского конденсатора.
Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе.
В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины (рис.14.38).
Согласно формуле (14.14) для потенциальной энергии заряда в однородном поле энергия конденсатора равна:
где q — заряд конденсатора, а d — расстояние между пластинами.
Так как Ed=U, где U — разность потенциалов между обкладками конденсатора, то его энергия равна:
Эта энергия равна работе, которую совершит электрическое поле при сближении пластин вплотную.
Если заряд на пластинах остаётся постоянным, при сближении пластин поле совершает положительную работу:
При этом энергия электрического поля уменьшается.
Заменив в формуле (14.25) разность потенциалов или заряд с помощью выражения (14.22) для электроемкости конденсатора, получим:
Можно доказать, что эти формулы справедливы для любого конденсатора, а не только для плоского.
Энергия электрического поля.
Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электрическом поле этих тел.
Значит, энергия может быть выражена через основную характеристику поля — напряженность.
Так как напряженность электрического поля прямо пропорциональна разности потенциалов (U=Ed), то согласно формуле
энергия конденсатора прямопропорциональна квадрату напряженности электрического поля внутри него:
.
Применение конденсаторов.
Зависимость электроемкости конденсатора от расстояния между его пластинами используется при создании одного из типов клавиатур компьютера.
На тыльной стороне каждой клавиши располагается одна пластина конденсатора, а на плате, расположенной под клавишами, — другая.
Нажатие клавиши изменяет емкость конденсатора.
Электронная схема, подключенная к этому конденсатору, преобразует сигнал в соответствующий код, передаваемый в компьютер.
Энергия конденсатора обычно не очень велика — не более сотен джоулей.
К тому же она не сохраняется долго из-за неизбежной утечки заряда.
Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии.
Но это совсем не означает, что конденсаторы как накопители энергии не получили практического применения.
Они имеют одно важное свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при разрядке через цепь с малым сопротивлением они отдают энергию почти мгновенно.
Именно это свойство широко используют на практике.
Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей.
Возбуждение квантовых источников света — лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости.
Однако основное применение конденсаторы находят в радиотехнике.
Энергия конденсатора пропорциональна его электроемкости и квадрату напряжения между пластинами. Вся эта энергия сосредоточена в электрическом поле. Энергия поля пропорциональна квадрату напряженности поля.
Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Электростатика — Физика, учебник для 10 класса — Класс!ная физика