Что такое NVRAM и почему она не всегда энергонезависима

Энергонезависимое ОЗУ

При проектировании современных микропроцессорных систем разработчики зачастую сталкиваются с проблемами выбора подходящего типа запоминающего устройства. Зачастую к запоминающему устройству предъявляются противоречивые требования.

При проектировании современных микропроцессорных систем разработчики зачастую сталкиваются с проблемами выбора подходящего типа запоминающего устройства. Зачастую к запоминающему устройству предъявляются противоречивые требования.

В результате во многих случаях область памяти разбивается на ряд отдельных блоков:

  • Постоянное запоминающее устройство. Относительно медленная память, предназначенная в первую очередь для хранения рабочей программы при отключении питания. В высокопроизводительных системах в процессе работы осуществляется копирование содержимого ПЗУ в быстродействующее ОЗУ.
  • Быстродействующее ОЗУ. Предназначено для оперативного хранения данных в процессе работы. В ряде случаев для повышения быстродействия системы в эту область ОЗУ копируется полностью или частично содержимое ПЗУ программ.
  • Энергонезависимое ОЗУ или электрически программируемое ПЗУ. Предназначено в первую очередь для длительного хранения данных (например, конфигурации системы) при отключении питания.

На протяжении многих лет делались неоднократные попытки объединения различных областей памяти в составе одного устройства. Одним из самых удачных решений можно признать разработку энергонезависимого ОЗУ с батарейным питанием.

Что такое энергонезависимая память?

NVRAM (Non Volatile Random Access Memory) – общее название энергонезависимой памяти. Энергонезависимая память – это такая, данные в которой не стираются при выключении питания. В противоположность ей есть энергозависимая память, данные в которой исчезают при отключении питания. Т.е. когда питание на микросхему (или модуль) памяти подается, она «помнит» данные, когда перестает подаваться – она их «забывает».

Под понятие «энергонезависимая» подпадает несколько видов памяти. Кстати сказать, память (и энергозависимая, и энергонезависимая) имеется не только в компьютере, но и во всех околокомпьютерных и периферийных устройствах:

  • в принтерах — лазерных, струйных и матричных ,
  • в мониторах,
  • в модемах,
  • графических картах и т.д.

Даже в компьютерных клавиатурах имеются оба вида памяти.

Оба они упакованы в бескорпусную микросхему («капельку»), покрытую компаундом.

Такая конструкция — все «в одном флаконе» — именуется контроллером (от английского «control» — управление) и очень широко применяется в электронике.

Иерархическая пирамида компьютерной памяти

Иерархическая пирамида компьютерной памяти

С технической точки зрения, компьютерной памятью считается любой электронный накопитель. Быстрые накопители данных используются для временного хранения информации, которой следует быть «под рукой» у процессора. Если бы процессор вашего компьютера за любой нужной ему информацией обращался бы к жесткому диску, компьютер работал бы крайне медленно. Поэтому часть информации временно хранится в памяти, к которой процессор может получить доступ с более высокой скоростью.

Существует определенная иерархия компьютерной памяти. Место определенного вида памяти в ней означает ее «удаленность» от процессора. Чем «ближе» та или иная память к процессору, тем она, как правило, быстрее. Перед нами иерархическая пирамида компьютерной памяти, которая заслуживает подробного рассмотрения.

Вершиной пирамиды является регистр процессора.
За ним следует кеш-память первого (L1)
и второго уровня (L2)
Оперативная память делится на:
физическую и виртуальную
И кеш, и оперативная память являются временными хранилищами информации
Далее идут постоянные хранилища информации:
ПЗУ/BIOS; съемные диски; удаленные накопители (в локальной сети); жесткий диск
Подножие пирамиды образуют устройства ввода, к которым относятся:
клавиатура; мышь; подключаемые медиаустройства; сканер/камера/микрофон/видео; удаленные источники; другие источники

Процессор обращается к памяти в соответствии с ее местом в иерархии. Информация поступает с жесткого диска или устройства ввода (например, с клавиатуры) в оперативную память. Процессор сохраняет сегменты данных, к которой нужен быстрый доступ, в кеш-памяти. В регистре процессора содержатся специальные инструкции. К рассмотрению кеш-памяти и регистра процессора мы еще вернемся.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая — диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

Назначение энергонезависимой памяти CMOS

Микропрограммы в $BIOS$ считывают данные об оборудовании ПК из микросхемы $BIOS$, после чего они выполняют обращение к жесткому или гибкому диску и передают управление тем программам, которые там записаны.

Набор микропрограмм, которые составляют $BIOS$, хранятся в постоянной памяти ПК, которая располагается на системной плате. Параметры $BIOS$ зашиты компанией-разработчиком, но пользователи при надобности могут вносить необходимые изменения в эти параметры. Для этого служит связанная с $BIOS CMOS$-память, которая хранит настройки системы, в частности, вводимые пользователем через программу $BIOS Setup.$ Общий объем $CMOS$-памяти составляет всего $256$ байт.

К примеру, изготовители $BIOS$ не могут ничего знать о параметрах установленных на определенный ПК жестких или гибких дисков. Для обеспечения работы с таким оборудованием программы, которые входят в состав $BIOS$, должны знать, где можно найти нужные параметры. Но по известным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве (ПЗУ).

Готовые работы на аналогичную тему

Для хранения подобных данных используется энергонезависимая $CMOS$-память. От оперативной памяти она отличается тем, что ее содержимое не удаляется после выключения ПК, а от ПЗУ – тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы. Микросхема $CMOS$-памяти питается от батарейки, которая расположена на системной плате. Заряда батарейки достаточно для того, чтобы микросхема не теряла данные даже в случае, если ПК не будут включать несколько лет.

Расположение батарейки CMOS-памяти

Рисунок 2. Расположение батарейки CMOS-памяти

$CMOS$ используется для хранения информации о конфигурации, составе оборудования ПК и его параметрах, таких как данные о дисковых накопителях, о ЦП, тип видеоадаптера, наличие сопроцессора и других данных, а также о режимах его работы и информации, необходимой при запуске ПК (например, о порядке загрузки ПК). Микросхема $CMOS$-памяти также содержит электронные часы, которые указывают текущую дату и время.

Содержимое $CMOS$-памяти изменяется специальной программой $SETUP$, находящейся в $BIOS$. Тот факт, что ПК четко отслеживает время и дату (даже при выключенном питании), тоже связан с тем, что показания системных часов постоянно хранятся (и изменяются) в $CMOS$.

DDR SDRAM

Модельный ряд микросхем оперативной памяти довольно разнообразен, при этом сегодня зачастую в ПК используются лишь два вида памяти именуемых, как SDRAM и DDR SDRAM.

SDRAM представляет собой динамичную оперативную память, которая будучи в рабочем состоянии производит синхронизацию с шиной памяти. Сегодня имеют место быть две разновидности памяти SDRAM: РС 100 и РС 133. Так, РС 100 работает на частоте 100 МГц, а РС 133 – на частоте 133 МГц. На данный момент SDRAM-память встречается крайне редко, чаще всего лишь на компьютерах с процессором Pentium 3.

DDR

Уже с 2001 г. предпочтение отдается более совершенному стандарту памяти DDR SDRAM. В переводе с английского языка «DDR» означает «двойную скорость передачи информации», что является сущностью этой разновидности оперативной памяти. Работа DDR SDRAM предусматривает три тактовые частоты – 266, 333, 400 МГц. При этом следует учитывать, что разными фирмами-продавцами в строке-спецификации может быть указана, как тактовая частота, так и пропускная способность оперативной памяти, измеряемая в Мб/С.

DDR2 SDRAM является вторым поколением синхронной динамической памяти с произвольным доступом и двойной скоростью передачи информации. Данная разновидность оперативной памяти используется в вычислительной технике также в качестве видеопамяти. Предшественником DDR2 SDRAM была память DDR SDRAM.

Уже в 2010 г. данный вид памяти был в существенной мере вытеснен памятью стандарта DDR3.

К основным отличиям DDR2 от DDR можно отнести вдвое большую частоту работы шины, благодаря которой буфер микросхемы памяти получает данные. При этом для обеспечения необходимого потока данные на шину передаются из 4-х мест одновременно.

DDR3 SDRAM является синхронной динамической памятью третьего поколения с произвольным доступом и двойной скоростью передачи информации. Помимо того, что данная разновидность памяти используется в вычислительной технике в качестве оперативной, также ее можно использовать как видеопамять. Предшественником DDR3 была память DDR2 SDRAM. С приходом DDR3 предподкачка увеличилась до 8 бит.

DDR3 потребляет меньше энергии, нежели модули DDR2, этому способствует пониженное напряжение питания ячеек памяти. Понизить напряжение питания удалось благодаря использованию более тонкого технического процесса во время производства микросхем и благодаря использованию транзисторов с двойным затвором, это, в свою очередь, снизило утечку тока.

Также существует разновидность памяти DDR3L, у которой с ещё более низкое энергопотребление, доходящее до 1,35 В, что на 10 процентов меньше, чем у DDR3.

В 2012 г. стало известно о новой разработке — память DDR3L-RS, выпущенная для использования на смартфонах.

1990-е — твердотельные накопители и новые потребительские области применения

В 1990-х технология Flash создала новые возможности для NVM-устройств в конфигурациях как с NAND, так и с NOR. Архитектура NOR Flash имела преимущества произвольного доступа и малого времени чтения, а её функция execute-in-place (XIP) идеально подходила для выполнения кода, а значит, и для сферы обработки данных. NAND Flash имела более низкие скорости чтения, но гораздо меньший размер ячейки, позволяя создавать недорогие устройства с повышенной плотностью, что идеально подходило для внешних накопителей. Кроме того, доступ чтения/записи к блокам NAND имитировал доступ к дисковым приводам.

Прототип SSD-модуля компании SanDisk (бывшей SunDisk), созданный для IBM (1991 год)

Эли Харари, в 1970-х ставший пионером техпроцессов с тонким слоем оксида в Hughes Aircraft, в 1988 году основал SunDisk (позже переименованную в SanDisk) для разработки устройств памяти большой ёмкости на основе флэш-памяти. Вскоре к нему присоединились сооснователи компании Джек Юань и Санджай Мехротра, а также архитектор систем Роберт «Боб» Норман. Первым крупным заказом компании стали 10 тысяч 20-мегабайтных 2,5-дюймовых ATA-устройств, совместимых с plug and play, которые в 1991 году должны были заменить 20-мегабайтный жёсткий диск Connor в ThinkPad PC компании IBM. В то время надёжность флэш-памяти была низкой, однако Харари вдохновляли отзывы заказчиков о прототипах устройств: «Если несколько устройств проработают у меня все выходные без сбоев, значит, у вас получился хороший продукт». [Интервью с Эли Харари]

Для достижения уровней надёжности, необходимых для коммерческого применения, потребовалось несколько поколений усовершенствований техпроцессов производства и архитектуры систем флэш-памяти. Харари встроил в устройства метаданные, позволявшие его прошивке выполнять коррекцию ошибок, скрывая таким образом от пользователя проблемы с надёжностью — критически важного для популярности технологии фактора. Массовые ноутбуки с SSD появились на рынке в конце 2000-х, а современные SSD являются самым быстрорастущим сегментом рынка компьютерных накопителей.

Основатели SanDisk: Юань, Мехротра и Харари

Новые возможности возникли у SanDisk после того, как компания представила в 1994 году карты CompactFlash для цифровых камер. «Мы поняли, что вместо того, чтобы кто-то другой продавал плёнку или её продавали продавцы камер, нужно создать вторичный рынок флэш-карт. Превращение его в международный бренд стало поворотным фактором в истории компании», — рассказывает Мехротра. [Интервью с Санджаем Мехротра] В 2016 году SanDisk приобрела компания Western Digital.

Современные флэш-технологии доминируют на рынке NVM-устройств, который в 2019 году превысил 50 миллиардов долларов, и составляют крупнейший сегмент мировой полупроводниковой промышленности. Крупнейшим поставщиком флэш-чипов стала Samsung, имея примерно 30% рынка. Другими крупными поставщиками являются Toshiba и Western Digital.

Послесловие

Собственно, это основы основ и базисный базис, а посему, надеюсь, что статья была интересна Вам как с точки зрения расширения кругозора, так и в качестве кирпичика в персональных знаниях о персональном компьютере :).

На сим всё. Как и всегда, если есть какие-то вопросы, комментарии, дополнения и тп, то можете смело бежать в комментарии, которые расположены ниже. И да, не забудьте прочитать материал по выбору этой самой оперативной памяти.

Белов Андрей (Sonikelf) Заметки Сис.Админа [Sonikelf’s Project’s] Космодамианская наб., 32-34 Россия, Москва (916) 174-8226

Adblock
detector