Что такое квантовый компьютер? Разбор

Квантовый компьютер — что это простыми словами, принцип действия

Очередной привет всем читателям моего блога! Вчера в новостях проскочила в очередной раз пара сюжетов о «квантовом» компьютере. Мы из школьного курса физики знаем, что квант — это некая одинаковая порция энергии, еще есть словосочетание «квантовый скачок», то есть мнгновенный переход с некоего уровня энергии на еще более высокий уровень.. Давайте вместе разбираться, что такое квантовый компьютер, и что нас всех ожидает, когда появится эта чудо машина

Я впервые начал интересоваться этой темой при просмотре фильмов про Эдварда Сноудена. Как известно, этот американский гражданин собрал несколько терабайт конфиденциальной информации (компромата) о деятельности спецслужб США, хорошенько зашифровал ее и выложил в Интернет. «Если, сказал он, со мной что-нибудь случиться, информация будет расшифрована и станет таким образом доступна для всех.»

Расчет был на то, что информация эта «горячая», будет актуальна еще лет десять. А расшифровать ее можно современными вычислительными мощностями то же не меньше, чем через десять или больше лет. Квантовый же компьютер по ожиданиям разработчиков справится с этой задачей минут за двадцать пять.. Криптографы в панике. Вот такой «квантовый» скачок нас скоро ожидает, друзья.

Глава 1. Чем плохи обычные компьютеры?

Начнем с очень простого классического примера.

Представим, что у вас есть самый мощный суперкомпьютер в мире. Это компьютер Фугаку. Его производительность составляет 415 ПетаФлопс.

Давайте дадим ему следующую задачку: надо распределить три человека в две машины такси. Сколько у нас есть вариантов? Нетрудно понять что таких вариантов 8, то есть это 2*2*2 или 2 в третьей степени.

Как быстро наш суперкомпьютер справится с этой задачей? Мгновенно! Задачка-то элементарная.

А теперь давайте возьмем 25 человек и рассадим их по двум шикарным лимузинам, получим 2 в 25 степени или 33 554 432 варианта. Поверьте, это число тоже плевое дело для нашего суперкомпьютера.

А теперь 100 человек и 2 автобуса, сколько вариантов?

Считаем: 2 в 100 степени — это примерно 1.27х1030 степени! Или 1,267,650,600,228,229,401,496,703,205,376 вариантов.

Теперь нашему суперкомпьютеру на перебор всех вариантов понадобится примерно 4.6*10^+35 (4.6 на 10 в 35 степени) лет. А это уже очень и очень много. Такой расчет займет больше времени чем суммарные жизни сотен вселенных.

Суммарные жизни нашей вселенной: 14 миллиардов лет или 14 на 10 в 9 степени.

Даже если мы объединим все компьютеры в мире ради решения, казалось бы, такой простой задачки как рассадка 100 человек по 2 автобусам — мы получим решение, практически никогда!

И что же? Все? Выхода нет?

Есть, ведь квантовые компьютеры будут способны решить эту задачку за секунды!

И уж поверьте — использоваться они будут совсем не для рассадки 100 человек по 2 автобусам!

Квантовый компьютер всегда быстрее обычного? Для каких задач квантовый компьютер непригоден и проще использовать обычный?

Например, для наибольшего числа привычных нам задач: сложение, умножение, деление. Это довольно простые задачи, которые быстро и эффективно решаются на обычном компьютере и нет необходимости что-либо усложнять. Сделать то же самое на квантовом компьютере можно, но не нужно. Все существующие сейчас реализации квантового компьютера имеют тактовую частоту намного меньше, чем обычные компьютеры. Будет ли когда-то в будущем реализовано что-то квантовое, что сравнимо по частоте – вопрос трудно прогнозируемый, тут можно только гадать.

Но есть задачи, которые сейчас решаются неэффективно, просто путем перебора и обычный компьютер ничего не может с ними сделать кроме как перебирать и перебирать. Тут приходит на помощь квантовый компьютер и оказываются возможными решения, которые гораздо более эффективны, чем прямой перебор.

Переопределение безопасности

Скорость квантового компьютера также является серьезной проблемой в области шифрования и криптографии. Современные системы финансовой безопасности в мире основаны на факторизации больших чисел (алгоритмы RSA или DSA), которые буквально не могут быть взломаны обычными компьютерами в течение жизни Земли. Тем не менее квантовый компьютер может рассчитывать числа в разумный период времени.

С другой стороны, квантовые компьютеры смогут обеспечить небьющиеся функции безопасности. Они могут блокировать важные данные (например, онлайн-транзакции, учетные записи электронной почты) с гораздо лучшим шифрованием.
Многие алгоритмы были разработаны для квантовых компьютеров — наиболее известными являются алгоритм Гровера для поиска в неструктурированной базе данных и алгоритм Шора для факторизации больших чисел.

Для чего нужен квантовый компьютер?

Принцип квантового компьютера, выстроенный на выборе решения с достаточной долей вероятности и способность находить такое решение в разы быстрее, чем современные компьютеры, определяет и цели его использования. Прежде всего, появление такого вида вычислительной техники беспокоит криптографов. Это связано со способностями квантового компьютера с легкостью вычислять пароли. Так, самый мощный квантовый компьютер, созданный российско-американскими учеными, способен получить ключи к существующим системам шифрования.

Есть и более полезные прикладные задачи для квантовых компьютеров, они связаны с поведением элементарных частиц, генетикой, здравоохранением, финансовыми рынками, защитой сетей от вирусов, искусственным интеллектом и множеством других, решить которые пока не могут обычные компьютеры.

Принцип работы КК

Привычная схема работы компьютеров, ноутбуков, смартфонов или планшетов, использующая цифровой принцип, базируется на использовании классических алгоритмов, что кардинально отличается от принципа действия квантового компьютера. Так, обычный компьютер покажет одинаковый результат вне зависимости от того, сколько раз запустить вычисление, варианты просчитываются последовательно.

Принцип работы КК

Квантовый компьютер использует совершенно иной – вероятностный принцип работы. В определённом смысле система уже содержит все возможные варианты решений. Результат вычислений – это наиболее вероятностный ответ, а не однозначный, при этом при каждом последующем запуске квантового алгоритма вероятность получения правильного ответа растёт, а значит, спустя 3–4 быстрых прогона можно быть уверенным, что мы пришли к верному решению, например, ключу шифрования.

В квантовых системах, применяющих в своей работе кубиты, с ростом числа частиц растёт в геометрической прогрессии и количество обрабатываемых одновременно значений.

Говоря о том, как работает квантовый компьютер, стоит упомянуть и о связи кубитов. При наличии нескольких кубитов в системе изменение одного повлечёт также изменение остальных частиц. Вычислительная мощность достигается путём параллельных расчётов.

Несмотря на многомиллионные вложения, развиваются квантовые технологии достаточно медленно. Это связано с большим количеством трудностей, с которыми пришлось столкнуться учёным в процессе исследований, включая необходимость построения низкотемпературных саркофагов с максимальной изоляцией камеры с процессором от любых возможных внешних воздействий для сохранения квантовых свойств системы. Кроме того, перед исследователями стоит задача по решению ошибок, поскольку квантовые процессы и вычисления имеют вероятностную природу и не могут быть стопроцентно верными.

Построение стабильных систем к тому же далеко от идеала, а при реализации квантового компьютера на физическом уровне применяется несколько вариантов решений с использованием разных технологий. Так что создание полноценного универсального квантового компьютера всё ещё в будущем, хоть и не таком далёком, как казалось ещё пять лет назад. Его созданием занимаются крупнейшие компании, такие как IBM, Google, Intel, Microsoft, внёсшие большой вклад в развитие технологий, а также некоторые государства, для которых данный вопрос имеет стратегическое значение.

Хитрая технология

Квантовые вычисления не универсальны, они не способны заменить традиционные компьютеры. «Информация обрабатывается хитро, мы пользуемся всем большим пространством состояний, чтобы ее переваривать, но наши возможности считать ее оттуда невелики. Потому что при измерении у вас происходит коллапс до двоичного кода, — говорит старший научный сотрудник Центра квантовых технологий МГУ, руководитель сектора квантовых вычислений Станислав Страупе. — Поэтому квантовые алгоритмы — наука о том, как извлечь из этого многомерного пространства полезную информацию за небольшое количество измерений». Математический аппарат квантовой теории готов с середины XX века, и сейчас проблема не в математике, а в аппаратной реализации. Главные технологии, на которых сосредоточены все усилия, — ионные ловушки, нейтральные атомы, фотоны и сверхпроводники. Как и в атомном проекте, никто точно не знает, какая из технологий выйдет в итоге в лидеры, поэтому развивать требуется все.

Чтобы не потеряться и всегда быть на связи, читайте нас в Яндекс.Дзене!

Промежуточные выводы

Запустив оба примера, мы получим один и тот же результат. На квантовом компьютере это займет больше времени, потому что необходимо провести дополнительную компиляцию в квантовоассемблерный код и отправить его на исполнение в облако. Использование квантовых вычислений имело бы смысл, если бы скорость выполнения их элементарных операций – гейтов – была бы во много раз меньше чем в классической модели.

Измерения специалистов показывают, что выполнение одного гейта занимает около 1 наносекунды. Так что алгоритмы для квантового вычислителя должны не копировать классические, а по максимуму использовать уникальные свойства квантовой механики. В следующей статье мы разберем одно из основных таких свойств — квантовый параллелизм — и поговорим о квантовой оптимизации в целом. Затем определим наиболее подходящие сферы для квантовых вычислений и расскажем об их применении.

Что останавливает торжество квантовых компьютеров?

— Конечно, было бы здорово, если бы удалось сделать компактный и дешевый универсальный квантовый процессор, для всякой задачи работающий не хуже классического и пригодный для помещения в смартфон. Но, увы, пока технологические затруднения слишком велики. Квантовость хрупка. Окружающий мир постоянно толкает наше квантовое состояние, и оно размывается.

Представьте, что вы пытаетесь удержать неподвижным маленький шарик в широкой миске, в то время как вас и миску в ваших руках постоянно и быстро толкают в разные стороны. Шарик остается в миске, расстояние от него до ваших глаз более-менее постоянно, но его положение все время меняется, он дрожит и в ваших глазах превращается в расплывчатое пятно.

На научном языке это называется «декогеренцией». Для большого числа кубитов подобный фазовый шум — настоящее бедствие, способное быстро убить все то, что дает преимущество квантовому компьютеру. Он загоняет квантовое состояние в классическое, губит суперпозицию. Нужно изолироваться, не дать окружающему миру толкать наши кубиты. Один из выходов — попросту заморозить окружающее до суперкосмического холода, как в «Ди-вэйв». Оттого и трехметровые габариты, и высокая цена — хотя сам процессор величиной с ноготь.

Но сейчас интенсивно разрабатываются и другие платформы для квантового процессора, например дефекты в нанокристаллах алмаза, которые способны сохранять когерентность при комнатной температуре.

В последние годы в гонку ввязались мировые технологические гиганты, а потому можно ожидать, что в ближайшие десятилетия мы увидим полноценный квантовый компьютер. Если не на своем столе в гостиной, то в университетской лаборатории уж точно.

Читайте также:

Наш канал в Telegram. Присоединяйтесь!

Быстрая связь с редакцией: читайте паблик-чат Onliner и пишите нам в Viber!

Перепечатка текста и фотографий Onliner.by запрещена без разрешения редакции. nak@onliner.by

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector