Блок питания ATX: как он есть (часть 1)

Как сделать самодельный регулируемый блок питания – подборка схем

Регулируемый блок питания (БП) – один из основных приборов в арсенале радиотехника и электронщика. Он необходим при сборке и отладке практически любого электронного устройства. Можно, конечно, этот прибор купить, отдав немалые деньги, а можно собрать самостоятельно. В этой статье мы рассмотрим схемы БП разной сложности и соберем регулируемый блок питания своими руками.

Начнем с самых простых схем, собрать которые сможет даже начинающий радиотехник. Но несмотря на простоту и ограниченный функционал, они вполне годятся для питания во время отладки большинства конструкций самостоятельной сборки.

Трансформаторный регулируемый блок питания с симисторным регулятором

Предлагаемый БП довольно прост в изготовлении и позволяет получить постоянное напряжение величиной от 4 до 25 В. Принцип регулирования – фазоимпульсный. Выходной ток зависит от мощности трансформатора и при указанных на схеме элементах может достигать 10 А.

Как сделать самодельный регулируемый блок питания - подборка схем

Рассмотрим работу устройства более подробно. Сетевое напряжение подается на первичную обмотку трансформатора Т1 через симистор VS1. Сразу после включения БП симистор закрыт, ток через обмотку трансформатора не течет. При появлении положительной полуволны конденсатор С2 начинает заряжаться через резистор R3 и диод VD1 моста VD1-VD4. Как только напряжение на нем достигнет 160 В, зажжется неоновая лампа HL1 и конденсатор разрядится через управляющий электрод симистора, одновременно открывая его. При этом на сетевую обмотку Т1 начнет поступать напряжение. По окончании полуволны симистор закрывается.

Одновременно этот же резистор через диод VD3 моста подключается параллельно первичной обмотке трансформатора Т1. Сделано это для того, чтобы симистор после короткого открывающего импульса сразу же не закрылся. Ведь он работает на реактивную нагрузку, ток через которую достигнет значения удержания симистором не сразу.

При появлении отрицательной полуволны процесс повторяется, но конденсатор теперь заряжается напряжением обратной полярности через резистор R5 и диод VD2 моста. Соответственно, при зажигании лампы HL1 к управляющему электроду прикладывается напряжение другой полярности, открывая симистор в обратном направлении. Во время этой фазы параллельно сетевой обмотке подключается резистор R5 через диод VD4.

Время зарядки конденсатора зависит от положения движка переменного резистора R1. Таким образом, при каждой полуволне симистор будет открываться с той или иной задержкой, отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет на первичной, а значит, и на вторичной обмотке сетевого трансформатора. Диоды VD3 и VD4 подключают резисторы.

На месте Т1 может работать любой силовой трансформатор с выходным напряжением 28-30 В. От мощности трансформатора, как было замечено выше, будет зависеть максимальный выходной ток БП. Диоды Д226 можно заменить на любые выпрямительные, рассчитанные на ток не менее 200 мА и напряжение не менее 300 В. Конденсаторы С1, С2 неполярные. КУ208Г можно заменить на КУ208В. Вместо диодов Д245 подойдут любые из серий Д242, Д245, КД213, КД210, Д243, выдерживающие обратное напряжение 50 В и ток 10 А. Конденсатор С5 керамический неполярный.

Диоды VD5-VD8 и симистор VS1 необходимо установить на радиаторы с площадью рассеяния не менее 100 см 2 каждый. Если радиатор общий, то элементы придется устанавливать через изолирующие прокладки. При этом площадь рассеяния такого радиатора должна быть соответственно увеличена.

Настройка блока питания сводится к установке необходимого диапазона регулировки напряжения подстроечным резистором R2. Если устройство работает нестабильно (это будет заметно по провалам в свечении лампы HL1 и нестабильному выходному напряжению), то можно попробовать уменьшить номинал резистора R4 до 150 Ом.

Меняем симистор на тиристор

Если в вашем распоряжении не оказалось симистора, можно обойтись обычным тиристором, немного изменив схему его включения.

Как сделать самодельный регулируемый блок питания - подборка схем

Поскольку тиристор не может работать в цепи переменного тока, он питает первичную обмотку трансформатора Тr1 через диодный мост. Схема фазоимпульсного управления представляет собой аналог однопереходного транзистора, собранного на Т1, Т2. Питается схема от простейшего параметрического стабилизатора, состоящего из мощного стабилитрона D1 и токоограничивающего резистора R1.

При появлении полуволны начинается зарядка конденсатора С1. Скорость зарядки можно регулировать при помощи переменного резистора P1. Как только напряжение на конденсаторе достигнет определенного уровня, откроется аналог однопереходного транзистора и разрядит конденсатор через управляющий электрод тиристора VS1. Последний откроется, закоротит диодный мост, который в свою очередь подаст на обмотку Тr1 переменное напряжение. По окончании полуволны тиристор закроется. В начале следующей полуволны процесс повторится.

Таким образом, при каждой полуволне тиристор будет открываться с той или иной задержкой, отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет на первичной, а значит, и на вторичной обмотке сетевого трансформатора.

На месте VD1-VD4 могут работать любые высоковольтные выпрямительные диоды, выдерживающие ток более 3 А и обратное напряжение не менее 300 В. КТ605 можно заменить на КТ809А, КТ629, КТ935 или MJE340. Вместо КТ361 можно поставить КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж – KT501K. Тиристор КУ202Н заменим на КУ202М. Конденсатор С1 неполярный. Стабилитрон D1 любой на напряжение стабилизации 14-24 В, выдерживающий ток 1 А. Остальные элементы такие же, что и в предыдущей схеме. Диоды обоих мостов и тиристор установлены на радиаторы.

Универсальные схемы регуляторов напряжения и тока на линейных регуляторах LMxxx для любого блока питания

Для сборки регулируемых блоков питания своими руками очень удобно использовать интегральные стабилизаторы напряжения серии LMххх (отечественный аналог КР142ЕНхх). Рассмотрим несколько схем регулировки напряжения и тока на этих микросхемах.

Линейный регулятор напряжения

Этот регулятор собран на весьма популярной микросхеме LM317, представляющей собой интегральный регулируемый стабилизатор напряжения. Схема позволяет изменять выходное напряжение в пределах 4…30 В и может быть использована в блоках питания любого типа.

Как сделать самодельный регулируемый блок питания - подборка схем

Поскольку микросхема относительно маломощная (максимальный ток 1.5 А), в качестве силового ключа в конструкцию добавлен мощный транзистор Т1. Регулировка производится при помощи переменного резистора P1. Вместо транзистора КТ819АМ можно использовать приборы этой же серии с буквами БМ-ГМ. Отечественный аналог LM317 – КР142ЕН12А. Конденсатор С3 керамический. Транзистор Т1 и микросхема DD1 устанавливаются на радиаторы с площадью рассеивания не менее 100 см 2 каждый. Схема довольно простая и может быть выполнена навесным монтажом, но для тех, кто любит делать все “по уму”, приведем печатную плату стабилизатора.

Как сделать самодельный регулируемый блок питания - подборка схем

Печатная плата регулятора

Регулятор тока

Этот регулятор тоже использует интегральный стабилизатор напряжения LM317, но включенный по схеме стабилизации тока.

Как сделать самодельный регулируемый блок питания - подборка схем

Как и в предыдущей схеме, здесь в качестве силового ключа используется мощный транзистор T1. Регулировка тока производится переменным резистором P1. В крайнем верхнем по схеме положении движка ток максимальный, в нижнем – минимальный. Диапазон регулировки – 500 мА … 12 А. Диод D2, включенный последовательно D1, служит для уменьшения нижнего порога регулировки.

В регуляторе можно использовать любые пятнадцатиамперные диоды, выдерживающие обратное напряжение 50 В, КТ818АМ можно заменить на полупроводник той же серии с буквами БМ-ГМ. Конденсатор С3 керамический. Отечественный аналог LM317 – КР142ЕН12А. Резистор R2 должен иметь мощность не менее 10 Вт. Его можно изготовить из обмоточного провода диаметром 0.8-1 мм, взяв кусок необходимой длины. Транзистор VT1 и диоды D1, D2 необходимо установить на радиаторы. Если радиатор общий, то элементы необходимо установить через изолирующие прокладки.

Если необходимо снизить верхний порог регулировки тока, то сопротивление резистора R2 нужно уменьшить. Рассчитать номинал резистора можно по формуле: I = 1.2/R, где I – необходимый максимальный ток в амперах, R – сопротивление резистора R2 в омах.

Экономичный регулятор – стабилизатор тока

Рассмотренная выше схема, нужно признать, не самая удачная. На токоизмерительном резисторе и диодах D1, D2 бесполезно рассеивается приличная мощность. Массогабаритные показатели узла из-за этих же элементов оставляют желать лучшего.

Предлагаемая ниже схема лишена вышеперечисленных недостатков. В ней отсутствуют мощные диоды вольтдобавки, а токоизмерительный резистор имеет очень малое сопротивление, что уменьшает потребляемую им мощность на порядок. Диапазон же регулировки тока у этой конструкции составляет 0 … 10 А, что вполне отвечает требованиям, предъявляемым к лабораторным источникам питания.

Как сделать самодельный регулируемый блок питания - подборка схем

Сердцем регулятора-стабилизатора является операционный усилитель LM358, управляющий ключом на мощном полевом транзисторе Т1. Резисторы R1, R2, R3 совместно со стабилитроном D1 представляют собой генератор опорного напряжения, регулировка тока производится при помощи переменного резистора R3. Резистор R5 токоизмерительный. Он выполнен из отрезка обмоточного провода диаметром 0.5-0.8 мм.

На место T1 можно установить транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 – КР1401УД5, КР1053УД2, КР1040УД1. Транзистор Т1 должен быть установлен на радиатор с площадью рассеивания не менее 100 см 2 .

реклама

295x450 59 KB. Big one: 439x670 14 KB

На картинке представлены напряжения, токи вторичных обмоток трансформатора и выходных напряжений для трех вариантов:

1. (красный). Выходной конденсатор отсутствует.
2. (зеленый). Выходной конденсатор присутствует, но его емкости явно недостаточно.
3. (синий). Выходной конденсатор обладает достаточной емкостью.

Форма напряжения на выходной обмотке, в первом приближении, остается синусоидальной для всех трех случаев, но только в первом – обмотки трансформатора намотаны медным проводом, и хотя медь хорошо проводит электрический ток, но ее используется довольно много, а потому сопротивление обмоток весьма чувствительно по величине. Чем больше ток нагрузки, чем она более «импульсная», тем сильнее искажается напряжение на выходе трансформатора.

Посмотрите на форму тока для всех трех вариантов – по мере увеличения емкости сглаживающего конденсатора растет величина тока потребления вторичной обмотки с одновременным его «сужением» в зонах максимума напряжений. Ток нагрузки блока питания 1 ампер, но от вторичной обмотки потребляется 4 А, то есть следует говорить о «пик факторе» четыре. Иначе говоря, в трансформаторном БП пиковый ток выходной обмотки в три-четыре раза больше тока нагрузки, и по мере увеличения емкости сглаживающих конденсаторов он только возрастает, хоть и не так существенно. Это важный момент.

От общего к частному, рассмотрим основные составные части блока питания.

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Стабилизатор напряжения LM7805 | LM7809 | LM7812

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

LM7805 обозначение выводов

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Правила эксплуатации автоаккумулятора

Для поддержания автоаккумулятора в работоспособном состоянии недостаточно подготовить надежное зарядное устройство. Дополнительно выполняются и такие рекомендации:

  • Постоянная поддержка заряда. Аккумуляторный источник постоянно подзаряжается. При перемещении заряд поступает от генератора и других узлов автотранспорта. Если техника не эксплуатируется, то для восстановления заряда применяют ЗУ, как стационарного, так и портативного типа. Если батарея полностью разряжается, то специалисты рекомендуют проводить стремительное восстановление. В противном случае, запуститься процесс сульфатации свинцовых пластин.
  • Пределы напряжения (около 14 В). Напряжение, которое подается генератором, не должно чрезмерно превышать этот параметр. При этом не имеет особого значения тот факт, какой именно режим запущен. Если мотор не функционирует, то напряжение может снижаться до 12,6–13 В. При таких показателях применяют ЗУ с соответствующими параметрами и индикаторами.
  • Отключение потребителей при неработающем моторе. Если зажигание отключено, то и все устройства, фары отключаются. В противном случае, источник питания достаточно быстро потеряет заряд.
  • Подготовка автоаккумулятора. Перед восстановлением заряда с аккумуляторной батареи удаляют подтеки электролитического состава, пыль. Токопроводящие выводы очищаются от окислов, налета. Перед подачей напряжения тщательно проверяются соединения и провода. Ведь даже минимальные смещения провоцируют нарушения, проблемы.
  • В зимний период источник перемещают в теплое помещение. Ведь при отрицательной температуре электролитический состав становится плотным, густым. Это провоцирует ухудшение прохождения заряда.

Зарядное устройство из компьютерного блока питания для автомобильной аккумуляторной батареи

Что понадобится для изготовления

Более 90% комплектующих для лабораторника в компьютерном блоке питания уже есть. Оставшиеся придется подбирать под конкретную схему (элементы недорогие и их будет немного), но обязательно понадобятся:

  • два потенциометра для регулировки напряжения и тока;
  • несколько оксидных конденсаторов на напряжение не ниже 35 вольт (лучше 50+) емкостью, соответствующей штатной емкости элементов канала +12 вольт (или больше, если уместятся по габаритам);
  • клеммы для подключения нагрузки (удобно использовать красную для плюсового вывода и черную для минусового);
  • вольтметр и амперметр для измерения выходных параметров (можно использовать аналоговые приборы, можно цифровые, а удобнее применять сдвоенный блок вольтметр-амперметр).

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Из приборов обязательно понадобится мультиметр. Не будет лишним и осциллограф – проверить наличие выходных импульсов на микросхеме ШИМ и ее реакцию на управляющее воздействие, если что-то пойдет не так. Также нужен будет паяльник с комплектом расходников и мелкий слесарный инструмент (набор отверток, кусачки и т.п.).

Стабилизатор

Продолжаем улучшать наш простой блок питания своими руками. Для получения качественного и стабильного напряжения без малейших пульсаций, скачков, и просадки напряжения используют стабилизатор напряжения.

В качестве стабилизатора используют стабилитрон, или интегральный стабилизатор напряжения. Мы собрали схему блока питания для устройства, которое нуждается в стабилизированном источнике питания. Это устройство собрано на контроллере, и без стабильного напряжения оно работать не будет. При небольшом повышении напряжении контроллер сгорит. А при понижении напряжении устройство откажется работать. Вот для таких устройств и предназначен стабилизатор.

Вывод 1 интегрального стабилизатора — входное напряжение. Вывод 2 — общий (земля). Вывод 3 — выходит стабилизированное напряжение.

Максимум, что может выдать L7805 — ток в 1,5 А, поэтому надо рассчитывать остальные детали на ток более 1,5 А. Выход трансформатора выбираем на ток более 1,5 ампера и напряжением выше стабилизированного значения больше на два вольта. Например, для LM7812 с выхода трансформатора должно выходить 14 — 15 В, для LM7805 7 – 8 В. Но не забывайте, что эти стабилизаторы греются из-за внутреннего сопротивления. Чем больше перепад между входом и выходом, тем больше нагрев. Ведь лишнее напряжение эти стабилизаторы гасят на себе.

Интегральные стабилизаторы бывают с общим минусом LM78**, или с общим плюсом LM79**. На месте звездочек находятся цифры указывающие напряжение стабилизации. Например LM7905 — общий плюс, напряжение стабилизации -5 В. Еще один пример LM7812 — общий минус, напряжение стабилизации 12 В. А теперь посмотрим распиновку, или назначение выводов интегрального стабилизатора.

Лабораторный блок питания

Схема лабораторного блока питания содержит LM324-микросхему. Она включает в себя четыре усилителя. Лабораторный блок является источником питания с высочайшей точностью выходного сигнала.

Он маленький, но с большим КПД. Этот агрегат должен иметь большой корпус. Необходимо подобрать радиатор под размер корпуса и трансформатор. Также понадобятся конденсаторы и шунт.

Схема агрегата включает в себя:

  • Преобразователь;
  • Пусковой механизм;
  • Разнообразные компоненты.

Основу блока питания составляет ir2153. Схема содержит стабилизатор интенсивности для питания всей схемы. Пусковой механизм является сложным устройством в данном блоке. Устройство функционирует в линейном режиме и обеспечивает плавную регулировку тока и напряжения.

В данной схеме необходимо использовать несколько стабилизаторов. Один принимает напряжение не более тридцати вольт, а второй является более мощным.

Во время функционирования они не нагреваются. Усилитель подпитывается от более сильного стабилизатора. Опорное напряжение подается посредствам операционного усилителя.

Схема типа АТХ блока питания

Как отремонтировать компьютерный БП?

Как отремонтировать компьютерный БП? Как отремонтировать компьютерный БП? Как отремонтировать компьютерный БП?

Наиболее безопасно и удобно включать ремонтируемый блок в сеть через разделительный трансформатор 220v — 220v.
Такой трансформатор просто изготовить из 2-х ТАН55 или ТС-180 (от ламповых ч/б телевизоров). Просто соответствующим образом соединяются анодные вторичные обмотки, не надо ничего перематывать. Оставшиеся накальные обмотки можно использовать для построения регулируемого БП.
Мощность такого источника вполне достаточна для отладки и первоначального тестирования и дает массу удобств:
— электробезопасность
— возможность соединять земли горячей и холодной части блока единым проводом, что удобно для снятия осциллограмм.
— ставим галетный переключатель — получаем возможность ступенчатого изменения напряжения.

Также для удобства можно зашунтировать цепи +310В резистором 75K-100K мощностью 2 — 4Вт — при выключении быстрее разряжаются входные конденсаторы.

Если плата вынута из блока, проверьте, нет ли под ней металлических предметов любого рода. Ни в коем случае НЕ ЛЕЗЬТЕ РУКАМИ в плату и НЕ ДОТРАГИВАЙТЕСЬ до радиаторов во время работы блока, а после выключения подождите около минуты, пока конденсаторы разрядятся.

На радиаторе силовых транзисторов может быть 300 и более вольт, он не всегда изолирован от схемы блока!

Принципы измерения напряжений внутри блока.

Обратите внимание, что на корпус БП земля с платы подаётся через проводники около отверстий для крепежных винтов.
Для измерения напряжений в высоковольтной («горячей») части блока (на силовых транзисторах, в дежурке) требуется общий провод — это минус диодного моста и входных конденсаторов. Относительно этого провода всё и измеряется только в горячей части, где максимальное напряжение — 300 вольт. Измерения желательно проводить одной рукой.
В низковольтной («холодной») части БП всё проще, максимальное напряжение не превышает 25 вольт. В контрольные точки для удобства можно впаять провода, особенно удобно припаять провод на землю.

Проверка резисторов.

Если номинал (цветные полоски) еще читается — заменяем на новые с отклонением не хуже оригинала (для большинства — 5%, для низкоомных в цепях датчика тока может быть и 0.25%). Если же покрытие с маркировкой потемнело или осыпалось от перегрева — измеряем сопротивление мультиметром. Если сопротивление равно нулю или бесконечности — вероятнее всего резистор неисправен и для определения его номинала потребуется принципиальная схема блока питания либо изучение типовых схем включения.

Проверка диодов.

Если мультиметр имеет режим измерения падения напряжения на диоде — можно проверять, не выпаивая. Падение должно быть от 0,02 до 0,7 В (в зависимости от тока, протекаемого через него). Если падение — ноль или около того (до 0,005) – выпаиваем сборку и проверяем. Если те же показания – диод пробит. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20 кОм). Тогда в прямом направлении исправный диод Шотки будет иметь сопротивление порядка одного — двух килоом, а обычный кремниевый — порядка трех — шести. В обратном направлении сопротивление равно бесконечности.

Для проверки БП можно и нужно собрать нагрузку.

Распиновка разъема ATX 24 pin, с проводниками ООС по основным каналам — +3,3V; +5V; +12V.

Азбука молодого ремонтника компьютерного БП

Показан «максимальный» вариант — проводники ООС бывают не во всех блоках, и не навсех каналах. Самый распространённый вариант ООС по +3,3V (коричневый провод). В новых блоках может отсутствовать выход -5V (белый провод).
Берём выпаянный из ненужной платы ATX разъём и припаиваем к нему провода сечением не менее 18 AWG, стараясь задействовать все контакты по линиям +5 вольт, +12 и +3.3 вольта.
Нагрузку надо рассчитывать ватт на 100 по всем каналам (можно с возможностью увеличения для проверок более мощных блоков). Для этого берём мощные резисторы или нихром. Также с осторожностью можно использовать мощные лампы (например, галогенные на 12В), при этом следует учесть, что сопротивление нити накаливания в холодном состоянии сильно меньше, чем в нагретом. Поэтому при запуске с вроде бы нормальной нагрузкой из ламп блок может уходит в защиту.
Параллельно нагрузкам можно подключить лампочки или светодиоды, чтобы видеть наличие напряжения на выходах. Между выводом PS_ON и GND подключаем тумблер для включения блока. Для удобства при эксплуатации можно всю конструкцию разместить в корпусе от БП с вентилятором для охлаждения.

Проверка блока:

Можно предварительно включить БП в сеть, чтобы определиться с диагнозом: нет дежурки (проблема с дежуркой, либо КЗ в силовой части), есть дежурка, но нет запуска (проблема с раскачкой или ШИМ), БП уходит в защиту (чаще всего — проблема в выходных цепях либо конденсаторах), завышенное напряжение дежурки (90% — вспухшие конденсаторы, и часто как результат — умерший ШИМ).

Начальная проверка блока

Снимаем крышку и начинаем проверку, особое внимание обращая на поврежденные, изменившие цвет, потемневшие или сгоревшие детали.

Предохранитель. Как правило, перегорание хорошо заметно визуально, но иногда он обтянут термоусадочным кембриком – тогда проверяем сопротивление омметром. Перегорание предохранителя может свидетельствовать, например, о неисправности диодов входного выпрямителя, ключевых транзисторов или схемы дежурного режима.

Дисковый термистор. Выходит из строя крайне редко. Проверяем сопротивление — должно быть не более 10 Ом. В случае неисправности заменять его перемычкой нежелательно — при включении блока резко возрастет импульсный ток заряда входных конденсаторов, что может привести к пробою диодов входного выпрямителя.

Диоды или диодная сборка входного выпрямителя. Проверяем мультиметром (в режиме измерения падения напряжения) на обрыв и короткое замыкание каждый диод, можно не выпаивать их из платы. При обнаружении замыкания хотя бы у одного диода рекомендуется также проверить входные электролитические конденсаторы, на которые подавалось переменное напряжение, а также силовые транзисторы, т.к. очень велика вероятность их пробоя. В зависимости от мощности БП диоды должны быть рассчитаны на ток не менее 4…8 ампер. Двухамперные диоды, часто встречающиеся в дешевых блоках, сразу меняем на более мощные.

Как отремонтировать компьютерный БП?

Входные электролитические конденсаторы. Проверяем внешним осмотром на вздутие (заметное изменение верхней плоскости конденсатора от ровной поверхности к выпуклой), также проверяем емкость — она не должна быть ниже обозначенной на маркировке и отличаться у двух конденсаторов более чем на 5%. Также проверяем варисторы, стоящие параллельно конденсаторам, (обычно явно сгорают «в уголь») и выравнивающие резисторы (сопротивление одного не должно отличаться от сопротивления другого более чем на 5%).

Как отремонтировать компьютерный БП?

Ключевые (они же — силовые) транзисторы. Для биполярных — проверяем мультиметром падение напряжения на переходах «база-коллектор» и «база-эмиттер» в обоих направлениях. В исправном биполярном транзисторе переходы должны вести себя как диоды. При обнаружении неисправности транзистора также необходимо проверить всю его «обвязку»: диоды, низкоомные резисторы и электролитические конденсаторы в цепи базы (конденсаторы лучше сразу заменить на новые большей емкости, например, вместо 2.2мкФ * 50В ставим 10.0мкФ * 50В). Также желательно зашунтировать эти конденсаторы керамическими емкостью 1.0…2.2 мкФ.

Выходные диодные сборки. Проверяем их мультиметром, наиболее частая неисправность — короткое замыкание. Замену лучше ставить в корпусе ТО-247. В ТО-220 чаще помирают… Обычно для 300-350 Вт блоков диодных сборок типа MBR3045 или аналогичных на 30А — с головой.

Выходные электролитические конденсаторы. Неисправность проявляется в виде вздутия, следов коричневого пуха или потеков на плате (при выделении электролита). Меняем на конденсаторы нормальной емкости, от 1500 мкФ до 2200…3300 мкФ, рабочая температура — 105° С. Желательно использовать серии LowESR.
Также измеряем выходное сопротивление между общим проводом и выходами блока. По +5В и +12В вольтам — обычно в районе 100-250 ом (то же для -5В и -12В), +3.3В — около 5…15 Ом.

Потемнение или выгорание печатной платы под резисторами и диодами свидетельствует о том, что компоненты схемы работали в нештатном режиме и требуется анализ схемы для выяснения причины. Обнаружение такого места возле ШИМа означает, что греется резистор питания ШИМ 22 Ома от превышения дежурного напряжения и, как правило, первым сгорает именно он. Зачастую ШИМ в этом случае тоже мертв, так что проверяем микросхему (см. ниже). Такая неисправность — следствие работы «дежурки» в нештатном режиме, обязательно следует проверить схему дежурного режима.

Проверка высоковольтной части блока на короткое замыкание.

Берём лампочку от 40 до 100 Ватт и впаиваем вместо предохранителя или в разрыв сетевого провода.
Если при включении блока в сеть лампа вспыхивает и гаснет — все в порядке, короткого замыкания в «горячей» части нет — лампу убираем и работаем дальше без нее (ставим на место предохранитель или сращиваем сетевой провод).
Если при включении блока в сеть лампа зажигается и не гаснет — в блоке короткое замыкание в «горячей» части. Для его обнаружения и устранения делаем следующее:
Выпаиваем радиатор с силовыми транзисторами и включаем БП через лампу без замыкания PS-ON.
Если короткое (лампа горит, а не загорелась и погасла) — ищем причину в диодном мосте, варисторах, конденсаторах, переключателе 110/220V(если есть, его вообще лучше выпаять).
Если короткого нет — запаиваем транзистор дежурки и повторяем процедуру включения.
Если короткое есть — ищем неисправность в дежурке.
Внимание! Возможно включение блока (через PS_ON) с небольшой нагрузкой при не отключенной лампочке, но во-первых, при этом не исключена нестабильная работа БП, во-вторых, лампа будет светиться при включении БП со схемой APFC.

Проверка схемы дежурного режима (дежурки).

Краткое руководство: проверяем ключевой транзистор и всю его обвязку (резисторы, стабилитроны, диоды вокруг). Проверяем стабилитрон, стоящий в базовой цепи (цепи затвора) транзистора (в схемах на биполярных транзисторах номинал от 6В до 6.8В, на полевых, как правило, 18В). Если всё в норме, обращаем внимание на низкоомный резистор (порядка 4,7 Ом) — питание обмотки трансформатора дежурного режима от +310В (используется как предохранитель, но бывает и трансформатор дежурки сгорает) и 150k~450k (оттуда же в базу ключевого транзистора дежурного режима) — смещение на запуск. Высокоомные часто уходят в обрыв, низкоомные — так же «успешно» сгорают от токовой перегрузки. Меряем сопротивление первичной обмотки дежурного транса — должно быть порядка 3 или 7 Ом. Если обмотка трансформатора в обрыве (бесконечность) — меняем или перематываем транс. Бывают случаи, когда при нормальном сопротивлении первичной обмотки трансформатор оказывается нерабочим (имеются короткозамкнутые витки). Такой вывод можно сделать, если вы уверены в исправности всех остальных элементов дежурки.
Проверяем выходные диоды и конденсаторы. При наличии обязательно меняем электролит в горячей части дежурки на новый, припаиваем параллельно нему керамический или пленочный конденсатор 0.15…1.0 мкФ (важная доработка для предотвращения его «высыхания»). Отпаиваем резистор, ведущий на питание ШИМ. Далее на выход +5VSB (фиолетовый) вешаем нагрузку в виде лампочки 0.3Ах6.3 вольта, включаем блок в сеть и проверяем выходные напряжения дежурки. На одном из выходов должно быть +12…30 вольт, на втором — +5 вольт. Если все в порядке — запаиваем резистор на место.

Проверка микросхемы ШИМ TL494 и аналогичных (КА7500).
Про остальные ШИМ будет написано дополнительно.

  1. Включаем блок в сеть. На 12 ноге должно быть порядка 12-30V.
  2. Если нет — проверяйте дежурку. Если есть — проверяем напряжение на 14 ноге — должно быть +5В (+-5%).
  3. Если нет — меняем микросхему. Если есть — проверяем поведение 4 ноги при замыкании PS-ON на землю. До замыкания должно быть порядка 3…5В, после — около 0.
  4. Устанавливаем перемычку с 16 ноги (токовая защита) на землю (если не используется — уже сидит на земле). Таким образом временно отключаем защиту МС по току.
  5. Замыкаем PS-ON на землю и наблюдаем импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов.
  6. Если нет импульсов на 8 или 11 ногах или ШИМ греется – меняем микросхему. Желательно использовать микросхемы от известных производителей (Texas Instruments, Fairchild Semiconductor и т.д.).
  7. Если картинка красивая – ШИМ и каскад раскачки можно считать живым.
  8. Если нет импульсов на ключевых транзисторах — проверяем промежуточный каскад (раскачку) – обычно 2 штуки C945 с коллекторами на трансе раскачки, два 1N4148 и емкости 1…10мкф на 50В, диоды в их обвязке, сами ключевые транзисторы, пайку ног силового трансформатора и разделительного конденсатора.

Проверка БП под нагрузкой:

Измеряем напряжение дежурного источника, нагруженного вначале на лампочку, а потом — током до двух ампер. Если напряжение дежурки не просаживается — включаем БП, замыкая PS-ON (зеленый) на землю, измеряем напряжения на всех выходах БП и на силовых конденсаторах при 30-50% нагрузке кратковременно. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при полной нагрузке. Смотрим пульсации. На выходе PG (серый) при нормальной работе блока должно быть от +3,5 до +5В.

Эпилог и рекомендации по доработке:

После ремонта, особенно при жалобах на нестабильную работу, минут 10-15 измеряем напряжения на входных электролитических конденсаторах (лучше с 40%-ой нагрузкой блока) — часто один «высыхает» или «уплывают» сопротивления выравнивающих резисторов (стоят параллельно конденсаторам ) — вот и глючим… Разброс в сопротивлении выравнивающих резисторов должен быть не более 5%. Емкость конденсаторов должна составлять минимум 90% от номинала. Так же желательно проверить выходные емкости по каналам +3.3В, +5В, +12В на предмет «высыхания» (см. выше), а при возможности и желании усовершенствовать блок питания, заменяйте их на 2200 мкф или лучше на 3300мкф и проверенных производителей. Силовые транзисторы, «склонные» к самоуничтожению (типа D209) меняем на MJE13009 или другие нормальные, см. тему Мощные транзисторы, применяемые в БП. Подбор и замена.. Выходные диодные сборки по каналам +3.3В, +5В смело меняйте на более мощные(типа STPS4045) с не меньшим допустимым напряжением. Если в канале +12В вы заметили вместо диодной сборки два спаянных диода — необходимо поменять их на диодную сборку типа MBR20100 (20А 100В). Если не найдете на сто вольт — не страшно, но ставить необходимо минимум на 80В (MBR2080). Заменить электролиты 1.0 мкф х 50В в цепях базы мощных транзисторов на 4.7-10.0 мкф х 50В. Можете отрегулировать выходные напряжения на нагрузке. При отсутствии подстроечного резистора — резисторными делителями, которые установлены от 1й ноги ШИМа к выходам +5В и +12В (после замены трансформатора или диодных сборок ОБЯЗАТЕЛЬНО проверить и выставить выходные напряжения).

Рецепты ремонта от ezhik97:

Опишу полную процедуру, как я ремонтирую и проверяю блоки.

  1. Собственно ремонт блока — замена всего что погорело и что выявилось обычной прозвонкой
  2. Модифицируем дежурку для работы от низкого напряжения. Занимает 2-5 минут.
  3. Подпаиваем на вход переменку 30В от разделительного трансформатора. Это дает нам такие плюсы, как: исключается вероятность что-нибудь спалить дорогое из деталей, и можно безбоязненно тыкать осциллографом в первичке.
  4. Включаем систему и проверяем соответствие напряжение дежурки и отсутствие пульсаций. Зачем проверять отсутствие пульсаций? Чтобы удостоверится, что блок будет работать в компьютере и не будет «глюков». Занимает 1-2 минуты. Сразу же ОБЯЗАТЕЛЬНО проверяем равенство напряжений на сетевых фильтрующих конденсаторах. Тоже момент, не все знают. Разница должны быть небольшая. Скажем, процентов до 5 примерно.
    Если больше — есть очень большая вероятность что блок под нагрузкой не запустится, либо будет выключаться во время работы, либо стартовать с десятого раза и т.п.. Обычно разница или маленькая, или очень большая. Займет 10 секунд.
  5. Замыкаем PS_ON на землю (GND).
  6. Смотрим осциллографом импульсы на вторичке силового транса. Они должны быть нормальные. Как они должны выглядеть? Это надо видеть, потому как без нагрузки они не прямоугольные. Здесь сразу же будет видно, если что-то не так. Если импульсы не нормальные — есть неисправность во вторичных цепях или в первичных. Если импульсы хорошие — проверяем (для проформы) импульсы на выходах диодных сборок. Все это занимает 1-2 минуты.

Все! Блок 99% запустится и будет отлично работать!

Если в пункте 5 импульсов нет, возникает необходимость поиска неисправности. Но где она? Начинаем «сверху»

  1. Все выключаем. Отсосом отпаиваем три ноги переходного транса с холодной стороны. Далее пальцем берем транс и просто перекашиваем его, подняв холодную сторону над платой, т.е. вытянув ноги из платы. Горячую сторону вообще не трогаем! ВСЕ! 2-3 минуты.
  2. Все включаем. Берем проводок. Соединяем накоротко площадку, где была средняя точка холодной обмотки разделительного транса с одним из крайних выводов этой самой обмотки и на этом же проводе смотрим импульсы, как я писал выше. И на втором плече так же. 1 минута.
  3. По результатам делаем вывод, где неисправность. Часто бывает что картинка идеальная, но амплитуда вольт 5-6 всего (должно быть под 15-20). Тогда уже либо транзистор в этом плече дохлый, либо диод с его коллектора на эмиттер. Когда удостоверишься, что импульсы в таком режиме красивые, ровные, и с большой амплитудой, запаивай переходной транс обратно и посмотри осцилографом на крайние ноги еще раз. Сигналы будут уже не квадратными, но они должны быть идентичными. Если они не идентичны, а слегка отличаются — это косяк 100%.

Может оно и будет работать, только вот надежности это не добавит, а уж про всякие непонятные глюки, могущие вылезти, я промолчу.

Я все время добиваюсь идентичности импульсов. И никакого разброса параметров там ни в чем быть не может (там же одинаковые плечи раскачки), кроме как в полудохлых C945 или их защитных диодах. Вот сейчас делал блок — всю первичку восстановил, а вот импульсы на эквиваленте переходного трансформатора слегка отличались амплитудой. На одном плече 10,5В, на другом 9В. Блок работал. После замены С945 в плече с амплитудой 9В все стало нормально — оба плеча 10,5В. И такое часто бывает, в основном после пробоя силовых ключей с КЗ на базу.
Похоже утечка сильная К-Э у 945 в связи с частичным пробоем (или что там у них получается) кристалла. Что в совокупности с резистором, включенным последовательно с трансом раскачки, и приводит к снижению амплитуды импульсов.

Если импульсы правильные — ищем косяк с горячей стороны инвертора. Если нет — с холодной, в цепях раскачки. Если импульсов вообще нет — копаем ШИМ.

Вот и все. По моей практике это самый быстрый из надежных способов проверки.
Некоторые после ремонта сразу подают 220В. Я от этого отказался.

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector