5.1. Классификация компьютеров

Сравнение характеристики поколений эвм

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Микропроцессор — это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера — процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности.

Другая линия в развитии ЭВМ четвертого поколения, это — суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.

Характеристики Поколения ЭВМ
I II III IV
Годы применения 1948-1958 1959-1967 1968-1973 1974-1982
Элементная база Лампы Транзистор МИС БИС
Размеры Значительные Меньше размеров I поколения ЭВМ Меньше размеров I и II поколений ЭВМ Компактные
Количество ЭВМ в мире Десятки Тысячи Десятки тысяч Миллионы
Быстродействие 10-20 тыс. операций в секунду 100-1000 тыс. операций в секунду 1-10 млн. операций в секунду 10-100 млн. операций в секунду
Объём оперативной памяти 2 Кбайта 2-32 Кбайта 64 кбайта 2-5 мбайт
Типичные модели МЭСМ, БЭСМ-2 БЭСМ-6, Минск-2 IBM-360, IBM-370, ЕС ЭВМ, СМ ЭВМ IBM-PC, Apple
Носители информации Перфокарта, перфолента Магнитная лента Диск Гибкий и лазерный диски

«Сравнительные характеристики поколений ЭВМ»

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент – человек, постоянно откладывающий неизбежность. 10824 – | 7386 – или читать все.

Появлению современных компьютеров, которыми мы привыкли пользоваться, предшествовала целая эволюция в развитии вычислительной техники. Согласно распространенной теории, развитие индустрии ЭВМ шло на протяжении нескольких отдельных поколений.

Современные эксперты склонны считать, что их шесть. Пять из них уже состоялись, еще одно – на подходе. Что именно под термином «поколение ЭВМ» понимают IT-специалисты? Каковы принципиальные различия между отдельными периодами развития вычислительной техники?

Читайте также

Классификация ноутбуков Существуют 2 основные системы классификации ноутбуков, которые дополняют друг друга:Классификация на основе размера диагонали дисплея.Классификация по размеру диагонали экрана весьма условна. Экраны с одинаковой диагональю, но различным

Классификация архитектур Принципов классификации компьютерных архитектур немало. Вероятно, самый старый из них — по формату команд процессора. Другой, уже знакомый, — разделение процессоров на категории CISC и RISC. Оба эти подхода учитывают только аппаратный интерфейс

Компьютеры первого поколения (до 1955 года)

Все компьютеры первого поколения были основаны на электронных лампах, что делало их ненадежными — лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли купить только крупные корпорации и правительства. Лампы потребляют огромное количество электричества и вырабатывают большое количество тепла.

Кроме того, для каждой машины использовался свой язык программирования. Набор инструкций был небольшим, схема арифметического блока и блока управления была достаточно простой, а программного обеспечения практически не существовало. Емкость и мощность оперативной памяти были низкими. Для ввода-вывода использовались перфорированная лента, перфокарты, магнитная лента и печатные устройства, эксплуатационные запоминающие устройства были основаны на ртутных линиях задержки электронных лучевых трубок.

Эти неудобства стали преодолеваться за счет интенсивной разработки средств программной автоматизации, создания систем обслуживания программ, которые упрощали работу на станке и повышали эффективность его использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, чтобы приблизить их к требованиям, вытекающим из опыта эксплуатации компьютеров.

Использование электронной лампы в качестве основного элемента компьютера создало много проблем. Так как высота стеклянной лампы составляла 7 дюймов, машины были огромными. Одна из ламп выходила из строя каждые 7-8 минут, а так как на компьютере их было 15-20 тысяч, то поиск и замена поврежденной лампы заняли много времени.

Они также производили огромное количество тепла, и для работы «современного» компьютера в то время требовались специальные системы охлаждения. Потребовались целые команды инженеров, чтобы понять сложную схему большого компьютера. В этих компьютерах не было устройств ввода, поэтому данные вводились в память, подсоединяя правый разъем к правому гнезду.

Первые счетные устройства

Современный компьютер – результат деятельности и развития человека. Но люди нуждались в выполнении различных математических задач еще до изобретения информационных технологий. С самого начала развития человечества население училось считать, подсчитывать, умножать и делить. Это помогало в торговле, а также планировании запасов и других сферах жизни.

Самый простой вариант расчетов – использование эквивалентных предметов. Таких, которые не требуют пересчета количества его компонентов. Для этого задействовали балансирные весы. Они помогали определять массу.

Принцип эквивалентности использовался в абаке – первых в мире счетах. Также люди использовали:

  • четки;
  • антикитерские механизмы (появились с развитием зубчатых колес).

У разных народов рассматриваемые элементарные первые устройства для выполнения математических действий назывались по-разному. У японцев – серобян, у китайцев – суанпан, на Руси – русский шет.

Палочки Непера

В процессе подсчетов требовалось не только сложение и вычитание, но и умножение. Выполнялись такие действия при помощи палочек Непера. Их изобрел шотландский математик – Джон Непер. Он же стал первым автором логарифмов. Информация о подобных «устройствах» возникла в 1617.

Неперский прибор непосредственно выполнял умножения. Деление тоже можно осуществить, но придется постараться. Данный вариант не получил широкого распространения.

Классификация

Типизация по назначению

На станции метро в городе Шэньчжэнь установлена гигантская клавиатура. Во время ожидания поезда, вы можете посидеть на клавишах Enter, M,

  • Калькулятор
  • Консольный компьютер
  • Миникомпьютер
  • Мэйнфрейм
  • Персональный компьютер
    • Игровая приставка (Игровая консоль)
    • Карманный компьютер (КПК)
    • Одеваемый компьютер
    • Настольный компьютер
    • Ноутбук (Лэптоп)

    По системам счисления

    По элементной основе

    • релейные
    • ламповые
    • ферритдиодные
    • транзисторные дискретные
    • транзисторные интегральные

    Первая троичная ЭВМ «Сетунь» на ферритдиодных ячейках была построена Брусенцовым в МГУ.

    Поверхностный характер представленного подхода к классификации компьютеров очевиден. Он обычно используется лишь для обозначения общих черт наиболее часто встречающихся компьютерных устройств. Быстрые темпы развития вычислительной техники означают постоянное расширение областей её применения и быстрое устаревание используемых понятий. Для более строгого описания особенностей того или иного компьютера обычно требуется использовать другие схемы классификаций.

    Физическая реализация

    Более строгий подход к классификации основан на отслеживании используемых при создании компьютеров технологий. Не секрет, что самые ранние компьютеры были полностью механическими системами. Тем не менее уже в 30-х годах XX века телекоммуникационная промышленность предложила разработчикам новые, электромеханические компоненты (реле), а в 40-х были созданы первые полностью электронные компьютеры, имевшие в своей основе вакуумные электронные лампы. В 50-х — 60-х годах на смену лампам пришли транзисторы, а в конце 60-х — начале 70-х годов — используемые и сегодня полупроводниковые интегральные схемы (кремниевые чипы).

    Одним из первых полупроводников были точечные диоды на основе сульфида свинца (Pb) и окиси олова (Sn) в детекторных радиоприёмниках. Позже были разработаны полупроводники на основе германия (Ge). Ещё позже были разработаны полупроводники на основе кремния (Si). Если посмотреть на положение этих элементов в периодической таблице Д.И.Менделеева, то можно заметить, что все они находятся в одной колонке и движение происходит вверх по колонке в таблице Менделеева, поэтому можно предположить, что следующие полупроводники будут разработаны на основе углерода (C Язык программирования). На планете Земля белковые живые существа в своих «думателях» (мозгах) используют белковые образования (нейроны), построенные из белковых молекул, которые в основном являются длинными углеводородными молекулами, т.е. некоторые белки являются полупроводниками на основе углерода (C Язык программирования). Наиболее совершенным мозгом из белковых существ на планете Земля обладает человек.

    Приведённый перечень технологий не является исчерпывающим; он описывает только основную тенденцию развития вычислительной техники. В разные периоды истории исследовалась возможность создания вычислительных машин на основе множества других, ныне позабытых и порою весьма экзотических технологий. Например, существовали планы создания гидравлических и пневматических компьютеров, между 1903 и 1909 годами некто Перси И. Луджет даже разрабатывал проект программируемой аналитической машины, работающей на базе пошивочных механизмов (переменные этого вычислителя планировалось определять при помощи ниточных катушек).

    В настоящее время ведутся серьёзные работы по созданию оптических компьютеров, использующих вместо традиционного электричества световые сигналы. Другое перспективное направление подразумевает использование достижений молекулярной биологии и исследований ДНК. И, наконец, один из самых новых подходов, способный привести к грандиозным изменениям в области вычислительной техники, основан на разработке квантовых компьютеров.

    Впрочем, в большинстве случаев технология исполнения компьютера является гораздо менее важной, чем заложенные в его основу конструкторские решения.

    • Квантовый компьютер и квантовая связь
    • Механический компьютер
    • Оптический компьютер
    • Пневматический компьютер
    • Электронный компьютер
    • Биологический компьютер

    Файловые системы

    Исторически первой составляющей операционных систем, поддерживающей работу с дисками, стали файловые системы, поначалу их функционал был ограничен распределением дискового пространства и сохранением имен файлов, присвоенных пользователями.

    Компьютерный файл – это самый нижний уровень абстрагирования данных от физического хранения, существующих в виде байтов на носителе. Сегодня, говоря о файлах, чаще всего подразумевают файлы на дисках, к тому же данные в форме файлов хранятся и на флэшках, CD, DVD и на лентах резервного копирования. На компьютерах понятие «файлы» использовали с сороковых годов, так называли колоду перфокарт.

    На чем бы ни хранился файл, он состоит из массива данных и фолдера – контейнера, содержащего данные, с уникальным идентификатором. В приложении к компьютерным данным фолдер называют метаданными, то есть данными о данных. Термин «дисковый файл» (disk file) впервые был употреблен в документации к диску IBM 350 (1956), а «файловая система» (file system) в одной из первых операционных с разделением времени Compatible Time-Sharing System (CTSS), разработанной в Массачусетском технологическом институте в 1961 году. На ее основе была создана OC Multics, которая в свою очередь вдохновила создателей Unix.

    В 1973 году Гарри Килдал разработал файловую систему в составе своей ОС CP/M для 8-разрядного ПК, ее он затем переделал в DR-DOS 16- разрядного ПК, после чего в результате несложной комбинации против воли автора эта файловая система обрела новое воплощение в виде File Allocation Table (FAT) компании Micrоsoft.

    По мере увеличения размеров дисков возникали новые файловые системы, одним из важнейших шагов стала Unix File System (UFS), она дала толчок к развитию целой плеяды файловых систем. Вершиной стала 128-битовая файловая систем Zettabyte File System (ZFS), разработанная в Sun Micro Systems.

    В последние годы под влиянием необходимости работать с большими данными развитие файловых систем ускорилось. Их можно разделить на две категории: распределенные, обычно устанавливаемые на кластеры, и традиционные, но рассчитанные на работу с большим объемами данных. Из первых наибольшую известность получили Lustre, GPFS и две системы, созданные «по мотивам»

    Lustre, — GlusterFS и Ceph. Система GPFS является коммерческой, остальные доступны в открытых кодах. Менее популярны системы XtreemFS, MogileFS, pNFS, ParaScale, CAStor и Tahoe-LAFS. Во второй категории безусловный лидер – ZFS и близкая ей LZJB, дополненная алгоритмом сжатия данных без потерь. Кроме этого имеются еще NILFS, разработанная в Nippon Telephone and Telegraph CyberSpace Laboratories, и Veritas File System, разработанная компанией Veritas Software. Не исключено и паллиативное решение, где совмещаются файловые системы из обеих групп.

    Подробнее об эволюции СХД читайте здесь.

    Конструктивные особенности

    Современные компьютеры используют весь спектр конструкторских решений, разработанных за всё время развития вычислительной техники. Эти решения, как правило, не зависят от физической реализации компьютеров, а сами являются основой, на которую опираются разработчики. Ниже приведены наиболее важные вопросы, решаемые создателями компьютеров:

    Цифровой или аналоговый

    Фундаментальным решением при проектировании компьютера является выбор, будет ли он цифровой или аналоговой системой. Если цифровые компьютеры работают с дискретными численными или символьными переменными, то аналоговые предназначены для обработки непрерывных потоков поступающих данных. Сегодня цифровые компьютеры имеют значительно более широкий диапазон применения, хотя их аналоговые собратья все ещё используются для некоторых специальных целей. Следует также упомянуть, что здесь возможны и другие подходы, применяемые, к примеру, в импульсных и квантовых вычислениях, однако пока что они являются либо узкоспециализированными, либо экспериментальными решениями.

    Среди наиболее простых дискретных вычислителей известен абак, или обыкновенные счёты; наиболее сложной из такого рода систем является суперкомпьютер.

    Двоичный, десятичный или троичный

    Примером компьютера на основе десятичной системы счисления является первая американская вычислительная машина Марк I.

    Важнейшим шагом в развитии вычислительной техники стал переход к внутреннему представлению чисел в двоичной форме. Это значительно упростило конструкции вычислительных устройств и периферийного оборудования. Принятие за основу двоичной системы счисления позволило более просто реализовывать арифметические функции и логические операции.

    Тем не менее переход к двоичной логике был не мгновенным и безоговорочным процессом. Многие конструкторы пытались разработать компьютеры на основе более привычной для человека десятичной системы счисления. Применялись и другие конструктивные решения. Так, одна из ранних советских машин работала на основе троичной системы счисления, использование которой во многих отношениях более выгодно и удобно по сравнению с двоичной системой (проект троичного компьютера Сетунь был разработан и реализован талантливым советским инженером Н. П. Брусенцовым).

    Наибольшей плотностью записи данных обладает система счисления с основанием равным основанию натуральных логарифмов, то есть равным числу е=2,71… . Из целочисленных систем счисления наибольшей плотностью записи данных обладает троичная система счисления, двоичная и четверичная системы счисления делят второе место. Поэтому, при одинаковой технологии (число инверторов на 1 мм^2), троичные компьютеры имеют значительно большую ёмкость оперативной памяти и большую производительность процессора. Троичная логика целиком включает в себя двоичную логику, как центральное подмножество, поэтому троичные компьютеры могут всё, что могут двоичные, плюс возможности троичной логики. Например, операции умножения и деления на 3 и на 3^n в двоичных компьютерах выполняются микропрограммами, а в троичных компьютерах выполняются аппаратно одной командой сдвига на 1 или n разрядов вправо или влево. Троичные алгоритмы работают быстрее двоичных алгоритмов, но на двоичных компьютерах это преимущество теряется.

    Ещё больший объём памяти и производительность имеют компьютеры с нецелочисленной системой счисления с нецелочисленным основанием равным числу е=2,71. .

    В целом, однако, выбор внутренней системы представления данных не меняет базовых принципов работы компьютера — любой компьютер может эмулировать любой другой.

    Программируемый

    Способность машины к выполнению определённого изменяемого набора инструкций (программы) без необходимости физической переконфигурации является фундаментальной особенностью компьютеров. Дальнейшее развитие эта особенность получила, когда машины приобрели способность динамически управлять процессом выполнения программы. Это позволяет компьютерам самостоятельно изменять порядок выполнения инструкций программы в зависимости от состояния данных.

    Хранящий программы и данные

    Во время выполнения вычислений часто бывает необходимо сохранить промежуточные данные для их дальнейшего использования. Производительность многих компьютеров в значительной степени определяется скоростью, с которой они могут читать и писать значения в (из) памяти и её общей ёмкости. Первоначально компьютерная память использовалась только для хранения промежуточных значений, но вскоре было предложено сохранять код программы в той же самой памяти (См. Архитектура фон Неймана), что и данные. Это удачное решение используется сегодня в большинстве компьютерных систем. Однако для управляющих контроллеров (микро-ЭВМ) более удобной оказалась схема, при которой данные и программы хранятся в различных разделах памяти (гарвардская архитектура).

    Классификация по способностям

    Одним из наиболее простых способов классифицировать различные типы вычислительных устройств является определение их способностей. Все вычислители могут, таким образом, быть отнесены к одному из трёх типов:

    • специализированные устройства, умеющие выполнять только одну функцию (например, Антикитерский механизм87 год до н. э. или ниточный предсказатель Вильяма Томсона1876 года);
    • устройства специального назначения, которые могут выполнять ограниченный диапазон функций (первая разностная машина Чарльза Бэббиджа и разнообразные дифференциальные анализаторы);
    • устройства общего назначения, используемые сегодня. Название компьютер применяется, как правило, именно к машинам общего назначения.

    Современный компьютер общего назначения

    При рассмотрении современных компьютеров наиболее важной особенностью, отличающей их от ранних вычислительных устройств, является то, что при соответствующем программировании любой компьютер может подражать поведению любого другого (хоть эта возможность и ограничена, к примеру, вместимостью средств хранения данных или различием в скорости). Таким образом, предполагается, что современные машины могут эмулировать любое вычислительное устройство будущего, которое когда-либо может быть создано. В некотором смысле эта пороговая способность полезна для различия компьютеров общего назначения и устройств специального назначения. Определение «компьютер общего назначения» может быть формализовано в требовании, чтобы конкретный компьютер был способен подражать поведению универсальной машины Тьюринга. Первым компьютером, удовлетворяющим такому условию, считается машина Z3, созданная немецким инженером Конрадом Цузе в 1941 году (доказательство этого факта было сделано в 1998).

Оцените статью
Fobosworld.ru
Добавить комментарий

Adblock
detector