Почему так сложно создать квантовый компьютер? С белорусским физиком объясняем технологию будущего
Изобретению квантовых компьютеров частенько предсказывают прорыв, аналогичный прорывам при изобретении колеса, покорении огня или создании хорошо знакомых нам компьютеров. Но пока с этой задачей в полном масштабе никто справиться не сумел. В чем же основная загвоздка и зачем нам квантовые компьютеры? Сегодня Onliner.by объясняет суть компьютеров будущего, а помогает нам в этом заместитель заведующего Центром квантовой оптики и информатики Института физики НАН Беларуси член-корреспондент Дмитрий Могилевцев.
Зачем вести разработки по созданию квантовых компьютеров? Чем нас не устраивают нынешние, которые постоянно прогрессируют в своей мощности? Теоретически квантовые компьютеры способны быстро решать задачи, на которые даже у суперкомпьютеров уйдут тысячелетия.
— Но есть нюанс. Пока квантовый компьютер дает выгоду только для определенного круга задач. Сейчас они и строятся под такие задачи. Поиск дающих выгоду квантовых алгоритмов — это сама по себе отдельная дисциплина, — рассказывает Дмитрий Могилевцев. — Бум квантовых компьютеров начался с того, что американец Питер Шор предложил с их помощью решать очень важную с практической точки зрения задачу факторизации. Она имеет огромное значение в криптографии.
Перемножить целые числа — это просто, а вот узнать, на какие простые множители разлагается число — крайне трудная задача для классического компьютера. 15 факторизуется на простые числа 3 и 5. Но что если число очень большое и состоит из тысяч цифр?
В теории на классическом компьютере такую задачу разрешить можно, однако на практике это потребует много времени. Увеличивается число — временны́е затраты возрастают по экспоненте и быстро выходят на времена, сравнимые с возрастом Вселенной. А алгоритм Шора, используя возможности квантовых компьютеров, способен произвести факторизацию за время, не намного превосходящее время умножения целых чисел.
Например, современный суперкомпьютер, позволяющий делать более десяти в пятнадцатой степени операций в секунду, разложил бы число с пятьюстами знаками за 5 млрд лет. Квантовый компьютер со скоростью всего миллион операций в секунду решил бы ту же задачу за 18 секунд.
Так как факторизация лежит в основе всей современной криптографии, изобретение эффективных квантовых компьютеров поставит под угрозу большинство активно используемых ныне методов шифрования данных. Ведь вся информация, которая нынче передается через сеть, подвергается шифрованию — банковские транзакции, секретная переписка в соцсетях и прочее. Квантовый компьютер сможет подобрать код для расшифровки этих данных в мгновение ока. И тогда не останется ничего тайного.
— Правда, надолго ли — это еще вопрос. Уже сейчас ведутся работы над постквантовым шифрованием, устойчивым к подобному взлому. Хотя эффективность таких систем криптографии пока еще много хуже традиционных.
А еще квантовые компьютеры могут быть очень полезными для моделирования динамики сложных квантовых систем. Именно в этом еще в начале 80-х годов прошлого века видел их выгоду знаменитый физик, лауреат Нобелевской премии Ричард Фейнман. Кстати, сама идея квантовых вычислений предложена известным советским математиком Юрием Маниным в 1980 году.
Схема хранения информации
Компьютеры, которые мы используем сегодня, хранят данные в двоичном формате — серии 0 и 1. Каждый компонент памяти называется битом, и им можно манипулировать с помощью шагов булевой логики.
С другой стороны, квантовый компьютер будет хранить данные в виде 0, 1 или квантовой суперпозиции двух состояний. Такой квантовый бит (также известный как кубиты) обладает гораздо большей гибкостью по сравнению с двоичной системой.
Кубиты могут быть реализованы с помощью частиц с двумя спиновыми состояниями — «вверх» и «вниз». Такая система может быть отображена на эффективную систему со спином 1/2.
Проблемы квантовых компьютеров
У квантовых компьютеров есть одна огромная проблема. В силу своих особых возможностей кубиты нуждаются в достаточно спокойной среде, чтобы можно было точно считывать с них любые данные. Каждое, даже самое маленькое нарушение сделает невозможным определение точного положения.
В случае классических компьютеров подобная проблема также играла важную роль в прошлом, но сегодня она настолько незначительна, что часто игнорируется даже в академической науке.
Для классических устройств вероятность ошибки составляет, примерно, 1 из 10 17 бит. В случае квантовых компьютеров это – один из нескольких сотен. И это в ситуации, когда квантовые компьютеры работают в максимально изолированных условиях и при температуре −272 градуса Цельсия, то есть немного выше абсолютного нуля. Любые колебания температуры, изменение электромагнитного поля и даже движение разрушают весь расчёт.
Другая проблема – «нестабильность» квантовых состояний. Каждый раз, когда мы измеряем квантовое состояние или хотим его нарушить, оно возвращается в одно из двух положений. Квантовое состояние распадется. Этот процесс называется квантовой декогеренцией.
Представьте себе это так: квантовый компьютер – это опытный математик, который выполняет сложные вычисления, а результаты составляют от 0 до 1 миллиона. Мы, в свою очередь, ребёнок, который понимает только то, что может быть много или мало чего-то. Каждый раз математик может получить разные результаты, например, 184662 или 356670, но в противоречии с нашим пониманием мира каждый из них будет классифицирован в один из двух «мешков» – маленький (0) или большой (1), без промежуточного значения. Это квантовая декогеренция.
Зачем нужны квантовые компьютеры
Одно из самых важных применений квантового компьютера сейчас — разложение на простые числа. Дело в том, что вся современная криптография основана на том, что никто не сможет быстро разложить число из 30–40 знаков (или больше) на простые множители. На обычном компьютере на это уйдёт миллиарды лет. Квантовый компьютер сможет это сделать примерно за 18 секунд.
Это означает, что тайн больше не будет, потому что любые алгоритмы шифрования можно будет сразу взломать и получить доступ к чему угодно. Это касается всего — от банковских переводов до сообщений в мессенджере. Возможно, наступит интересный момент, когда обычное шифрование перестанет работать, а квантовое шифрование ещё не изобретут.
Ещё квантовые компьютеры отлично подходят для моделирования сложных ситуаций, например, расчёта физических свойств новых элементов на молекулярном уровне. Это, возможно, позволит быстрее находить новые лекарства или решать сложные ресурсоёмкие задачи.
Сейчас квантовые компьютеры всего этого не умеют — они слишком сложные в производстве и очень нестабильные в работе. Максимум, что можно пока сделать, — заточить квантовый компьютер под единственный алгоритм, чтобы получить на нём колоссальный выигрыш в производительности. Как раз для этих целей их и закупают крупнейшие компании — чтобы быстрее решать одну-две самые важные для себя задачи.
В «Яндекс Практикуме» можно стать разработчиком, тестировщиком, аналитиком и менеджером цифровых продуктов. Первая часть обучения всегда бесплатная, чтобы попробовать и найти то, что вам по душе. Дальше — программы трудоустройства.
История идеи
Идею квантовых вычислительных устройств впервые высказал в 1980 году советский математик Юрий Манин. В книге «Вычислимое и невычислимое», рассуждая о сложности процесса считывания и записи биологической информации с молекул ДНК, он заметил, что для моделирования этого процесса могли бы подойти квантовые устройства. Здесь же Манин указал указал на главное их преимущество — рост числа состояний таких устройств идет по степенному закону:
Годом позже, в мае 1981 года, идею квантового компьютера сформулировал физик и нобелевский лауреат Ричард Фейнман в докладе, посвященном возможности моделирования физических процессов.
Ученый подчеркнул, что все явления подчиняются квантовым законам (а классическая физика — только приближение). Если поведение одиночного квантового объекта достаточно легко поддается моделированию с помощью компьютера, то нарастание количества элементов ведет к экспоненциальному росту сложности вычислений.
Из этого следовало два выхода, говорил Фейнман: первый — признать, что квантовые системы не поддаются моделированию с помощью компьютеров, и второй — построить вычислительную машину из квантовых элементов, подчиняющихся тем же квантовым законам, что и моделируемая система.
В своем докладе Фейнман впервые сформулировал понятие квантового симулятора — квантовой системы, воспроизводящей поведение какой-то другой квантовой системы, а также универсального квантового компьютера — такой квантовой системы, которую можно перенастроить (перепрограммировать) так, чтобы она была способна моделировать поведение многих других систем.
Наконец, Фейнман также впервые описал пример работы системы из кубитов, созданных из фотонов с определенной поляризацией.
Работа одного из элементов квантового компьютера в представлении Фейнмана
В 1985 году Дэвид Дойч из Оксфордского университета разработал теорию универсального квантового компьютера как квантовой машины Тьюринга.
Однако первый в мире квантовый компьютер мог появиться намного раньше, еще до статей Манина и Фейнмана, в 1950-е годы. Тогда японский ученый Гото Эйичи экспериментировал с низкотемпературной электроникой для разработки миниатюрного магнитно-управляемого бита, то есть системы, способной находиться в двух состояниях и служить, как и обычный полупроводниковый транзистор, основным элементом компьютера.
Эйичи назвал свой бит параметроном, и его первый прототип был создан в 1958 году в Токийском университете. Ниже представлен схематический чертеж оригинального устройства Гото.
Гото Эйичи и его команда повысить энергетический барьер между двумя состояниями битов, чтобы их гарантированно можно было различить. Иначе говоря, японские ученые хотели, чтобы устройство ни в коем случае не оказывалось в бистабильном состоянии, то есть в состоянии квантовой суперпозиции.
Такое состояние рассматривалось ими как нечто, вызывающее неуправляемый и нежелательный шум, в то время как квантовые эффекты могли дать им принципиально новый метод вычислений. Если бы не стремление японских специалистов к избавлению от ошибок, квантовые симуляторы, возможно, появились бы на полвека раньше.
Квантовый компьютер в России: перспективы
Один из самых мощных квантовых компьютеров в мире (51 кубит) создала в 2017 году научная группа Михаила Лукина, профессора Гарвардского университета и сооснователя Российского квантового центра. Ученые работают с «холодными атомами» — частицами, охлажденными почти до абсолютного нуля. Пока эти эксперименты проводятся в лабораториях Гарварда, но уже в 2018 году Газпромбанк инвестировал 1,5 миллиона долларов в Российский квантовый центр для разработки проекта по квантовому машинному обучению. Разработки ведутся по трем основным направлениям:
- использование искусственного интеллекта в описании сложных квантовых систем;
- применение аналоговых устройств на квантовых принципах для обучения нейронных сетей;
- разработка программного обеспечения для квантовых вычислений.
В то же время Российский квантовый центр, Институт физики твердого тела РАН, МИСиС, ВНИИА им. Н.Л. Духова и МГТУ им. Н.Э. Баумана продолжают исследования для разработки российского квантового «железа». Планируемая мощность квантового компьютера российского производства пока составляет несколько кубитов. Это, безусловно, отставание в количестве, но не в качестве и значении разрабатываемых технологий.
Хитрая технология
Квантовые вычисления не универсальны, они не способны заменить традиционные компьютеры. «Информация обрабатывается хитро, мы пользуемся всем большим пространством состояний, чтобы ее переваривать, но наши возможности считать ее оттуда невелики. Потому что при измерении у вас происходит коллапс до двоичного кода, — говорит старший научный сотрудник Центра квантовых технологий МГУ, руководитель сектора квантовых вычислений Станислав Страупе. — Поэтому квантовые алгоритмы — наука о том, как извлечь из этого многомерного пространства полезную информацию за небольшое количество измерений». Математический аппарат квантовой теории готов с середины XX века, и сейчас проблема не в математике, а в аппаратной реализации. Главные технологии, на которых сосредоточены все усилия, — ионные ловушки, нейтральные атомы, фотоны и сверхпроводники. Как и в атомном проекте, никто точно не знает, какая из технологий выйдет в итоге в лидеры, поэтому развивать требуется все.
Чтобы не потеряться и всегда быть на связи, читайте нас в Яндекс.Дзене!
Принципы работы квантового компьютера для чайников
Раз мы уж заговорили о квантовой физике, давайте немножко поговорим о ней. Я не буду углубляться в дебри друзья. Я ведь «чайник», а не квантовый физик. Лет сто назад Энштейн опубликовал свою теорию относительности. Все умные люди того времени удивлялись, как много в ней парадоксов и невероятных вещей. Так вот, все пародоксы Энштейна, описывающие законы нашего мира — просто невинный лепет пятилетнего ребенка по сравнению с тем, что твориться на уровне атомов и молекул.
Сами «квантовые физики», описывающие явления происходящие на уровнях электронов и молекул говорят примерно так: » Это невероятно. Этого не может быть. Но это так. Не спрашивайте нас, как это все работает. Мы не знаем, как и почему. Мы просто наблюдаем. Но это работает. Это доказано экспериментально. Вот формулы, зависимости и записи экспериментов.»
Так в чем же разница между обычным и квантовым компьютером? Ведь обычный компьютер тоже работает на электричестве, а электричество — это куча очень маленьких частиц — электронов?
Наши с Вами компьютеры работают по принципу или «Да» или «Нет». Если есть ток в проводе, это «Да»или «Единица». Если тока в проводе «Нет», то это «Ноль». Вариант значения «1 «и «0» есть единица хранения информации под названием «Бит».. Один байт это 8 бит и так далее и так далее…
Теперь представьте ваш процессор, на котором 800 миллионов таких «проводов» на каждом из которых за секунду появляется и исчезает такой вот «ноль» или «единица». И вы мысленно можете вообразить, как он обрабатывает информацию. Вы сейчас читаете текст, но на самом деле это совокупность нулей и единиц.
Путем перебора и вычислений Ваш компьютер обрабатывает Ваши запросы в Яндексе, ищет нужные до тех пор, пока не решит задачу и путем исключения не докопается до нужной Вам . Выводит на монитор шрифты, картинки в читаемом для нас виде… Пока надеюсь ничего сложного? А картинка — это тоже нули и единицы.
Представьте теперь себе друзья на секунду модель нашей солнечной системы. В центре Солнце, вокруг него летит Земля. Мы знаем, что она в определенный момент всегда находится в определенной точке пространства и через секунду она уже улетит на тридцать километров дальше.
Так вот, модель атома то же планетарная, там атом тоже вращается вокруг ядра. Но ДОКАЗАНО, друзья, умными парнями в очках, что атом в отличии от Земли одновременно и всегда находится во всех местах..Везде и нигде одновременно. И назвали они это замечательное явление «суперпозицией». Для того, чтобы познакомится поближе и другими явлениями квантовой физики, предлагаю глянуть научно-популярный фильм, где простым языком рассказывается о сложном и в довольно оригинальной форме.
Продолжим. И вот на смену «нашему» биту приходит квантовый бит. Его еще называют «Кубит». У него то же всего два исходных состояния «ноль» и «единица». Но, так как природа его «квантовая», то он может ОДНОВРЕМЕННО принимать все возможные промежуточные значения. И одновременно находиться в них. Теперь значения не надо последовательно вычислять, перебирать. долго искать в базе. Они известны уже заранее, сразу. Вычисления идут параллельно.
Первые «квантовые» алгоритмы для математических вычислений были придуманы еще математиком из Англии Питером Шором в 1997 году. Когда он показал их миру, все шифровальщики здорово напряглись, так как существующие шифры «раскалываются» этим алгоритмом за несколько минут.. Вот только компьютеров, работающих по квантовому алгоритму тогда еще не было.
С тех пор с одной стороны идет работа по созданию физической системы, в которой бы работал квантовый бит. То есть «железа». А с другой стороны уже придумывают защиту от квантового взлома и расшифровки данных.
А что сейчас ? А вот так выглядит квантовый процессор под микроскопом на 9 кубит от фирмы Google.
Неужели они нас обогнали? 9 кубит или по «старому» 15 бит, это не так много пока еще. Плюс дороговизна, масса технических проблем и короткое время «жизни» квантов. Но вспомните что сначала были 8 битные, потом появились 16 битные процессоры… Так будет и с этими …
2007
Канадская компания D-Wave продемонстрировала первый 16-кубитный квантовый компьютер, способный решать целый ряд задач и головоломок, типа судоку.
С 2011 года D-Wave предлагает за $11 млн долларов квантовый компьютер D-Wave One с 128-кубитным чипсетом, который выполняет только одну задачу – дискретную оптимизацию.